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Abstract – Precipitation forecasting may be of great value for farming, helping to reduce crop 

losses and irrigation costs, besides leveraging crop yield estimates. In Brazil, the state of 

Tocantins has a great part of its economy based on agriculture, where precipitation forecasting 

may help improve local production. Besides, rainfall forecasting can also contribute to urban 

planning through the management of water resources, among other applications Artificial 

Neural Networks (ANNs) have been used with relative success in precipitation forecasting for 

different locations and climates. With that, this work presents a method for weekly precipitation 

forecasting in six locations in the Brazilian state of Tocantins using ANNs and public climatic 

data. For that, MultiLayer Perceptron (MLP) networks were trained with data from local 

weather stations and El Niño Southern Oscillation (ENSO) related indices. First, input variables 

were selected using the forward selection algorithm. After that, ANN hyperparameters and 

input variables lag were optimized. The average Root Means Square Error (RMSE) of the final 

models was of 31.35 mm/week for the training dataset and 33.38 mm/week for the test dataset. 

Respectively, these values represent 9,83% and 10,46% of the maximum weekly precipitation 

found in the work dataset, which was of 319.1 mm. The results suggest that the created models 

are capable of reasonably good weekly precipitation forecasts, providing valuable information 

for farming, water resources management, urban planning and other related activies. Although 

there is possibly room for model improvement. 

Keywords: Precipitation forecasting. Artificial neural network. Irrigated Agriculture. Water 

Resources Planning. Meteorology. 

 

Um modelo de previsão de precipitação usando rede neural artificial na 

região central do ecótono no Brasil 
 

Resumo – A previsão de precipitação pode ser de grande valor para a agricultura, ajudando a 

reduzir as perdas de safra e os custos de irrigação, além de alavancar as estimativas de 

produtividade das lavouras. No Brasil, o estado do Tocantins tem grande parte de sua economia 

baseada na agricultura, onde a previsão da precipitação pode ajudar a melhorar a produção local. 

Além disso, a previsão de precipitação também pode contribuir com o planejamento urbano por 

meio da gestão de recursos hídricos, entre outras aplicações. Redes Neurais Artificiais (RNAs) 

têm sido usadas com relativo sucesso na previsão de precipitação para diferentes locais e climas. 

Com isso, este trabalho apresenta um método para previsão de precipitação semanal em seis 

localidades do estado do Tocantins, utilizando RNAs e dados climáticos públicos. Para isso, 

redes Perceptron Multicamadas (MLP) foram treinadas com dados de estações meteorológicas 

locais e índices relacionados ao El Niño Oscilação Sul (ENSO). Primeiro, as variáveis de 

entrada foram selecionadas usando o algoritmo de seleção direta. Depois disso, os hiper 

parâmetros da RNA e a defasagem das variáveis de entrada foram otimizados. A raiz média do 

erro quadrático (RMSE) dos modelos finais foi de 31,35 mm / semana para o conjunto de dados 
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de treinamento e 33,38 mm / semana para o conjunto de dados de teste. Respectivamente, esses 

valores representam 9,83% e 10,46% da precipitação máxima semanal encontrada no conjunto 

de dados do trabalho, que foi de 319,1 mm. Os resultados sugerem que os modelos criados são 

capazes de previsões de precipitação semanais razoavelmente boas, fornecendo informações 

valiosas para agricultura, gestão de recursos hídricos, planejamento urbano e outras atividades 

relacionadas. Embora possivelmente haja espaço para melhorias no modelo. 

Palavras-chave: Previsão de precipitação. Rede Neural Artificial. Agricultura Irrigada. Gestão 

de Recursos Hídricos. Meteorologia. 

 

Introduction 

In meteorology, precipitation refers to the process in which water vapor condenses in the 

atmosphere and falls back to the surface in any form, such as rain, dew, snow and sleet. As with 

many human activities, agriculture can be strongly impacted by precipitation, depending on 

how much, for how long and when precipitation occurs. Therefore, precipitation-forecasting 

models can provide valuable information to support decision-making. In this regard, Asseng et 

al. (2016) suggest that short-term rainfall forecasts may benefit productivity in dryland 

agriculture, supporting decisions about the sowing time and application of fertilizers and 

fungicides. Cardoso et al. (2010) suggest that the use of precipitation forecast data in soybean 

yield estimates can lead to more reliable estimates. As suggested by Cao et al. (2019), rainfall 

forecasts can also help to optimize irrigation scheduling and reduce water expenditure. 

Artificial Neural Networks (ANNs), MLP (MultiLayer Perceptron) in this research, are a 

type of supervised machine learning which are capable to learn nonlinear relationships between 

variables found in the given input data. For being a data-driven technique, no actual knowledge 

of the equations that represent such relationships is required when creating an ANN model. 

This non-parametric characteristic, along with the often-good results, make ANNs great tools 

for complex problems, such as precipitation forecasting. 

Many works have used ANNs to forecast precipitation and rainfall using different weather 

variables and climatic indices as model input data. While weather variables can provide 

information about the atmospheric conditions of a given location, climatic indices can indicate 

climate anomalies that may be related to large-scale phenomena, such as the El Niño Southern 

Oscillation (ENSO). In a very simplified manner, ENSO is a variation of the sea surface 

temperature (SST) and the air pressure over the equatorial Pacific Ocean. Extreme weather 

conditions, such as floods and droughts, can be experienced during ENSO events in parts of 

South America, South Asia and Australia (SCAIFE et al., 2019). As a result, ENSO can cause 

major impact on the economy, especially in agribusiness (SCAIFE et al., 2019; ANDERSON 

et al., 2017). 

In this regard, Abbot and Marohasy (2014) have created ANN models for rainfall 

forecasting using local weather variables and climatic indices, reporting better results than the 

General Circulation Model (GCM) used by local government institutions in Australia. Aspects 

of the soil can also be considered as predictor variables in these models. Soil water content, 

which refers to the amount of water the soil can retain, was used by Esteves et al. (2019) as one 

of the input variables of an ANN model used for rainfall forecasting. By applying ANNs to 

Doppler weather radar data, Dutta et al. (2011) was able to improve the estimation of rainfall 

intensity compared to traditional estimation methods. In addition, a relevant list of works on 

the topic, published between 2012 and 2017, is found in Abbot and Marohasy (2017). 

During model construction, the ANNs learn the mechanics of the target problem directly 

from the data provided to the network, usually meaning that as more data is available more is 

learned, thereby reducing output error. When working with time series data, such as weather 

data, missing observations can be very common, whether due to equipment failure or staff 

unavailability, when working with non-automatic weather stations. There are many data gap 
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filling techniques, ranging from simple arithmetic mean to linear regression and the ANN 

models themselves. Some of these techniques were evaluated by de Oliveira et al. (2010) for 

annual precipitation data, and by Bier and Ferraz (2017) for monthly precipitation and air 

temperature. 

One of the challenging tasks of ANN model creation is input variable selection, where 

the available variables are evaluated in order to find the best combination of variables for the 

problem. As ANNs are usually applied to nonlinear problems, some works have used the ANN 

models themselves to guide the variable selection process (ABBOT and MAROHASY, 2014, 

2017). This approach usually requires a lot of computational power, depending on the amount 

of input data and variables combinations available. That said, some methods tend to use linear 

correlation analysis for that task, whether to select the final combination or to identify the best 

candidates for later selection using ANNs (LEE et al., 2018; AKRAMI et al., 2013). 

GCMs are complex mathematical models that take into account the general circulation of 

the global atmosphere and the oceans, serving as a basis for weather forecasting and climate 

study. When using ANN models, it is possible to work on a much smaller scale, focusing on a 

small subset of variables that may impact on a large portion of the problem. In fact, reducing 

the number of variables, aside from reducing the model complexity, reduces the computational 

power required to run the model. 

The state of Tocantins, in the north region of Brazil, has most of its economy based on 

the agribusiness, where livestock farming takes the lead, followed by grains cropping, 

especially soybeans. In Tocantins, the soil suitable for the cultivation of grains is found in 

several patches over the 277,720 Km2 of territory, where the predominant biome is the 

Brazilian Cerrado. This, along with precipitation conditions that vary depending on the region, 

lead to very dispersed producing regions (SECRETARIA DO PLANEJAMENTO E 

ORÇAMENTO DO ESTADO DO TOCANTINS, 2016). 

In Brazil, the Meteorology National Institute (INMET) is a federal agency that publicly 

provides local weather information making use of dozens of weather stations across the country. 

Likewise, data for the ENSO climatic indices are provided by the National Oceanic 

Atmospheric and Administration (NOAA), which is a United States government agency. Both 

organizations provide time series data which can be used as input for ANN forecasting models. 

Considering the exposed scenario, this work aims to create a weekly precipitation 

forecasting model of 24 weeks ahead in the state of Tocantins, having as output the accumulated 

precipitation of each of the forecasted weeks. In order to achieve this objective, ANN models 

were created using up to 52 weeks of lagged data as input. The input data included INMET 

local weather stations observations and ENSO climatic indices, as provided by NOAA. 

Although many works have applied ANNs to precipitation forecasting, none of the works found 

during review were created for locations in the state of Tocantins. It is expected that the 

proposed model may provide reasonably accurate information and thus contribute to the local 

agribusiness activities and research. 

 

Materials and Methods 

The INMET provides data from weather stations all over Brazilian territory, having 194 

conventional stations and 576 automatic stations available for query on their website3 at the 

time of this paper. While conventional stations require dedicated staff to take readings on site, 

automatic stations can transmit data automatically through wireless networks (INSTITUTO 

NACIONAL DE METEOROLOGIA, 2011). Another aspect observed in this stations network 

was that, in general, conventional stations were installed earlier in time compared to automatic 

stations, consequently having longer time series available. 

 

3 http://www.inmet.gov.br/  

http://www.inmet.gov.br/
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Covering the Tocantins state territory, there were 20 automatic and 6 conventional 

stations. As depicted in Figure 1, those conventional stations were dispersed throughout the 

state, which allowed a reasonable overview of the weather on the state. Considering the territory 

coverage and the longer time series, the 6 conventional stations in Tocantins were selected as 

forecasting target for this work. Other stations, including those located in neighbor states, were 

used during the gap filling process, as described later in this work. Table 1 lists all the stations 

used in this work. 

 
Figure 1 - Conventional weather stations located in Tocantins state territory. 

 
 

 
Table 1 - INMET weather stations used in this work. 

No. Area WMO(1) T(2) U(3) Latitude(º) Longitude(º) Altitude(m) 

1 Almas/TO 86627 A S -11.284098 -47.212125 503.0 

2 Araguaçu/TO 86648 A S -12.592213 -49.528738 231.85 

3 Araguaína/TO 82659 C T -7.103778 -48.20133 231.85 

4 Araguaína/TO 81900 A S -7.103954 -48.201231 231.85 

5 Araguatins/TO 81821 A S -5.643725 -48.111839 131.0 

6 
Campos 

Lindos/TO 
81902 A S -8.154665 -46.639323 427.0 

7 Carolina/MA 82765 C S -7.337292 -47.459856 182.94 

8 Carolina/MA 81901 A S -7.337269 -47.459839 183.0 

9 
Colinas do 

Tocantins/TO 
81939 A S -8.092708 -48.478605 200.0 

10 Conceição do 82861 C S -8.259237 -49.263816 179.02 
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Araguaia/PA 

11 
Conceição do 

Araguaia/PA 
81940 A S -8.30361 -49.28277 176.0 

12 Dianópolis/TO 86632 A S -11.594448 -46.847209 728.0 

13 Estreito/MA 81863 A S -6.653272 -47.418241 183.0 

14 
Formoso do 

Araguaia/TO 
86629 A S -11.887377 -49.608215 215.0 

15 Gurupi/TO 86630 A S -11.745782 -49.049703 279.0 

16 Imperatriz/MA 82564 C S -5.536521 -47.478943 126.33 

17 Imperatriz/MA 81822 A S -5.555723 -47.459794 118.0 

18 
Lagoa da 

Confusão/TO 
86602 A S -10.828286 -49.847882 178.0 

19 
Marianópolis do 

Tocantins/TO 
81983 A S -9.576389 -49.72333 187.0 

20 Mateiros/TO 86608 A S -10.434441 -45.921941 791.0 

21 
Monte Alegre de 

Goiás/GO 
86670 A S -13.253521 -46.890326 551.0 

22 Palmas/TO 83033 C T -10.190897 -48.301822 291.68 

23 Palmas/TO 86607 A S -10.190744 -48.301811 292.0 

24 Paranã/TO 86650 A S -12.614893 -47.871917 285.0 

25 
Pedro 

Afonso/TO 
82863 C T -8.968576 -48.177264 189.53 

26 Pedro Afonso/TO 81941 A S -8.968677 -48.177259 190.0 

27 Peixe/TO 83228 C T -12.015387 -48.544866 252.24 

28 Peixe/TO 86649 A S -12.015377 -48.544517 251.0 

29 Pium/TO 86603 A S -10.476944 -49.629475 161.0 

30 Porangatu/GO n/a A S -13.309528 -49.117478 365.0 

31 
Porto 

Nacional/TO 
83064 C T -10.710716 -48.406362 243.28 

32 Rio Sono/TO 81981 A S -9.793363 -47.132732 291.0 

33 
Santa Fé do 

Araguaia/TO 
81898 A S -7.124191 -48.781267 171.0 

34 
Santa Rosa do 

Tocantins/TO 
86631 A S -11.429018 -48.184889 306.0 

35 
São Miguel do 

Araguaia/GO 
86646 A S -12.820489 -50.335969 210.0 

(1) World Meteorological Organization code; (2) station type, being automatic (A) or conventional (C); (3) 

station usage, being forecasting target (T) or support (S). 

 

The weather data from conventional stations was collected directly from the INMET 

website. This data contained daily observations realized at 09:00 AM and 09:00 PM local time 

(UTC-3), though, each variable was available only once a day. For instance, precipitation was 

available only at 09:00 AM. In order to transform those into single daily records, each 

observation was composed of data from the same day at 09:00 PM and data from the next day 

at 09:00 AM. Since each observation represents the mean or accumulated value of the last 24 

hours, observations at 09:00 AM include only 9 hours of the referred day. Therefore, it was 

expected to get a better representation of each day with the described composition. 

Historical data for the automatic stations was not available on the institute's website, 

having been delivered by mail, upon request. In this data, the observations were available for 
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each hour of the day. When transforming each variable into single daily records only those days 

with all 24 observations available were considered. In order to maintain consistency with the 

conventional stations data, the same time scheme was used here. For example, precipitation 

data was composed of observations from 10:00 PM on the same day up to 09:00 AM on the 

following day. 

From INMET data the following variables were extracted: minimum air temperature 

(MIN_T), maximum air temperature (MAX_T), compensated mean air temperature 

(MEAN_T), precipitation (P), relative air humidity (HU), photoperiod (SUN), wind speed (WS) 

and tar evaporation (TAR). 

Moving on to the ENSO indices, their relevance to the current problem is related to 

teleconnections, which are statistical correlations between climatic variables whose observation 

locations are separated by very far distances. As explained by Lee et al. (2018), due to the 

general circulation of the atmosphere and the oceans, regional climates are linked together in a 

global scale system. As suggested by other works (ABBOT and MAROHASY, 2014, 2017; 

MAROHASY and ABBOT, 2015; LEE et al., 2018), it is a relevant candidate as input for 

precipitation forecasting models. 

ENSO observation data were collected from NOAA website4, where monthly data were 

available for the following variables: Southern Oscillation Index (SOI), Niño 1+2 region SST 

(NI_1.2), Niño 1+2 SST anomaly (NA_1.2), Niño 3 SST (NI_3), Niño 3 SST anomaly (NA_3), 

Niño 3.4 SST (NI_3.4), Niño 3.4 SST anomaly (NA_3.4), Niño 4 SST (NI_4) and Niño 4 SST 

anomaly (NA_4). Observations from Niño regions were available from January 1982 through 

December 2019, while SOI was available from January 1951 through December 2019. 

Dataset Creation 

In order to build a weekly dataset, the year was divided into 52 weeks, always starting on 

the 1st of January of each year, despite the actual day of the week on the calendar. February 29, 

in case of leap years, and December 31 were inserted as additional days in weeks 9 and 52, 

respectively. During daily to weekly format transformation, each variable was processed 

individually, considering only those weeks where data was available for all days of that week. 

Many gaps have been found in the time series of the weather stations data, which has 

reduced the actual amount of data available for ANN training. When modeling time series 

problems with ANNs, data is usually provided to the network as an ordered sequence, where 

missing steps can invalidate the entire sequence. This structure is illustrated in Figure 2. In 

order to reduce the problem, estimated data can be used to fill those gaps. As evaluated by de 

Oliveira et al. (2010) and Bier and Ferraz (2017), several methods can be used to fill gaps in 

time series of precipitation and air temperature. In addition, these methods are also suggested 

for application in other weather variables (BIER and FERRAZ, 2017). Among those methods, 

regional weighting was proved to be reasonably simple and effective. Estimation of a missing 

observation using this method is given by the following equation: 

 

𝐷𝑥 =
1

𝑥
∑

𝑀𝑥

𝑀𝑖
𝐷𝑖

𝑛

𝑖=1

 
(1) 

 

Where 𝐷𝑥the weekly estimated value, 𝐷𝑖 is the corresponding weekly value from the 𝑖𝑡ℎ 

neighbour station, 𝑀𝑥 is the weekly mean value from the target station, 𝑀𝑖 is weekly mean 

value from the 𝑖𝑡ℎ neighbour and 𝑛 is the number of neighbour stations. 
 

Figure 2 - Input sequence for ANN training 

 

4 https://www.ncdc.noaa.gov/teleconnections/enso/indicators/soi/  

https://www.ncdc.noaa.gov/teleconnections/enso/indicators/soi/
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The first step to apply this method is to determine which neighbor stations will provide 

data for estimation. Tabony (1983), cited by Bier and Ferraz (2017), suggests that neighbors 

should be selected based on their statistical correlation with the target station. Due to this fact, 

different neighbors should be selected for each estimated variable. The author also suggests that 

neighbors should be positioned the most evenly as possible around the target station, increasing 

weather representation. For this work, neighbor stations were limited to a range of 200 Km 

around the target station. After that, correlation was calculated for each variable, where those 

stations with correlation higher than 0.7 were selected. Table 2 lists the forecasting target 

stations with their respective neighbors for each weather variable. 
 

Table 2 - Target stations with their respective neighbors for each variable. 

St. 

(1) 

Neighbor stations by variable 

P MAX_T MIN_T 
SUN, 

TAR 
MEAN_T HU WS 

3 
4, 9, 

8 

4, 8, 7, 10, 25, 

33, 5, 13, 26, 

17, 9, 16, 6, 11 

4, 9, 33, 13, 

26, 17, 25, 

8, 6, 5, 11, 7 

7, 25, 

10, 16 

4, 9, 25, 26, 13, 

33, 17, 8, 6 

4, 8, 9, 33, 

13, 5, 26, 7, 

6, 

11, 25, 17, 

16, 10 

n/a 

22 

34, 

18, 

23 

23, 31, 26, 32, 

25, 34, 29, 

19, 1, 18, 15, 

28, 27 

18, 26, 34, 

25, 1, 31, 23 

27, 31, 

25 

32, 28, 1, 25, 34, 

19, 31, 26, 

23 

23, 31, 25, 

26, 32, 34, 

29, 19, 

1, 18, 15, 27, 

28 

34, 32 

25 26 

9, 11, 3, 4, 19, 

22, 23, 10, 

31, 6, 7, 8, 26 

22, 8, 11, 7, 

19, 31, 3, 

4, 32, 9, 26 

7, 10, 

31, 3, 

22 

10, 23, 7, 8, 3, 

32, 22, 4, 19, 

6, 9, 31, 26 

10, 7, 31, 3, 

11, 19, 4, 22, 

8, 

23, 9, 6, 32, 

26 

n/a 

27 

24, 

15, 

18, 

34, 2, 

28 

28, 15, 34, 24, 

14, 2, 31, 30, 

1, 12, 18, 22, 

23, 29, 35 

28, 35, 15, 

34, 24, 30, 

29, 2, 18, 14, 

1, 31, 23 

22, 31 

15, 28, 2, 24, 18, 

35, 34, 29, 

1, 30, 31, 12, 14 

28, 34, 15, 

18, 2, 1, 35, 

29, 

14, 31, 24, 

12, 23, 22, 30 

23, 

35, 

14, 

12, 

34, 30 

31 

1, 32, 

34, 

18 

23, 22, 34, 15, 

29, 28, 27, 1, 

18, 32, 14, 19, 

26, 25, 12 

14, 15, 26, 

23, 28, 22, 

25, 27 

22, 25, 

27 

32, 18, 29, 12, 1, 

19, 34, 14, 

15, 26, 23, 28, 

22, 25, 27 

32, 18, 29, 

12, 1, 19, 34, 

14, 

15, 26, 23, 

28, 22, 25, 27 

n/a 
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36 1 
34, 27, 21, 20, 

1, 28, 24, 12 
1, 12 27 

27, 20, 24, 28, 

34, 1, 21, 12 

24, 34, 28, 1, 

20, 27, 21, 12 

20, 

34, 12 

(1) Target station number. 

 

ANNs are supervised learning techniques, which means that the network learns by 

adjusting itself to the provided data. Thus, the model error is measured by the difference 

between estimated output and the expected output, in other words, output error. In order to 

avoid erroneous model evaluation, values estimated using the regional weighting were used 

only as predictor variables, never as expected output. 

As initially proposed, the ANN models are to forecast up to 24 weeks ahead using data 

from the 52 past weeks. Following this scheme, each dataset row is composed of data from all 

predictor variables from the last 52 weeks and the forecasted variable (P) from the next 24 

weeks. Due to this aspect, the gap filling method had a great impact on the number of rows 

available for usage. The final dataset numbers are presented in Table 3. 

              
Table 3 - Available data rows for each target weather station. 

Station No. Area 

Available rows 

After gap filling 
Before gap 

filling 

3 Araguaína 1180 583 

22 Palmas 923 204 

25 Pedro Afonso 1215 429 

27 Peixe 1492 596 

31 Porto Nacional 750 11 

36 Taguatinga 924 125 

 

Lastly, the data was divided into training and testing data, respectively 70% and 30% of 

the available data. In addition, to avoid statistical bias between variables of different scales, all 

values were normalized between 0 and 1 using the following equation: 

 

𝑁𝑥 =
𝑥 −𝑀𝑖

𝑀𝑎𝑥 −𝑀𝑖𝑥
 

(2) 

 

Where 𝑁𝑥 is the normalized value of 𝑥, 𝑀𝑖𝑥is 𝑥 minimum value and 𝑀𝑎𝑥 is 𝑥 maximum 

value. 

The final datasets were composed of the 17 weather and climatic variables described in 

Material e Methods Section, and the number of the corresponding week (W). 

The ANN Model 

In short, ANNs are computational techniques that can learn linear and nonlinear relations 

between variables found in each dataset. There are many ANN types, where MLP is among the 

most common types. These networks are composed of many interconnected nodes arranged in 

layers, where data flows from input to output layer. Each node is a processing unit which applies 
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an activation function over the sum of all weighted input values, as denoted by the following 

equation (VELO et al., 2014): 

 

𝑂𝑖 = 𝑓(𝑤0𝑥0∑𝑤𝑗𝑥𝑗

𝑛

𝑗=1

) 

(3) 

 

Where 𝑂𝑖 is the 𝑖𝑡ℎ node output value, 𝑓 is the activation function, 𝑤𝑗 is the weight value, 

𝑥𝑗 is the input value, 𝑤0 is a threshold value (usually called bias), 𝑥0 is always 1, and 𝑛 is the 

number of input connections. In order to fit the network to the given model, sample data is 

repeatedly provided to the network, where output error is propagated back through the network 

for weights adjustment. Thus, if it was properly constructed, the network tends to slowly 

converge to optimal error. Figure 3 illustrates the general structure of an MLP. 

 
Figure 3 - General structure of a multilayer perceptron network. 

 
 

Once the ANN type is established, it is required to set the network hyperparameters, 

which are responsible for defining a great part of the network's behavior. Although being 

specific to the network mechanisms, their optimal values are often related to the applied model. 

In this work, MLPs were implemented using the Deep Learning for Java (DL4J)5 library, and 

hyperparameters were set after trial and error. 

MLP learning rate was set to 0.0001 and learning momentum to 0.90. Weights were 

randomly initialized, and the number of training epochs was limited to 300. Rectified Linear 

Units (ReLu) was used as node activation function and Mean Square Error (MSE) as loss 

function. ReLu is a nonlinear function that, for values below zero, returns zero, otherwise 

repeats the input value. ReLu has been used for many types of neural networks because a model 

that uses it is easier to train and often achieves better performance. Root Mean Square Error 

(RMSE) was the base metric for model analysis and optimization, while mean absolute error 

(MAE) was only used only to further illustrate results. In RMSE the errors are squared before 

they are averaged, the RMSE gives a relatively high weight to large errors. This means the 

RMSE is most useful when large errors are particularly undesirable. And the MAE is a linear 

score which means that all the individual differences are weighted equally in the average. 

 

5 https://deeplearning4j.org/  

https://deeplearning4j.org/
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The size of the network proved to be very susceptible to the number of input variables. 

Thus, it was not optimal to keep a constant network size during model creation. The network 

depth (number of hidden layers) was kept as 2 until the model adjustment step, where it was 

optimized, as later described. For the number of nodes per hidden layer (layer width), 

reasonable results were found when using two heuristic strategies based on the size of the input 

and the output layers. The first strategy uses the average of those values, while the second uses 

the sum. On both cases, all hidden layers were set to the same width. As for the output layer, it 

always had 24 nodes, as each node provided output for each of the forecasted weeks. 

As initially proposed, this work evaluated up to 52 weeks of lagged data for each input 

variable. For this, two strategies were established. The first strategy selects variables with 

maximum lag and tries to optimize the model by reducing the lag of each variable at a time. 

The second strategy selects variables with 4 weeks of lag and tries to optimize the model by 

increasing the lag of each variable. 

In order to evaluate all combinations of input lag strategies and layer width strategies, 4 

different models were created for each of the 6 target stations as enumerated in Table 4. It 

should be noted, however, that these model categories are numbered only for later reference, 

since there is not sequential relationship between them. 
 

Table 4 - The model categories created for each station. 

N.º Initial input lag ANN width strategy 

1 52 weeks Average 

2 52 weeks Sum 

3 4 weeks Average 

4 4 weeks Sum 

 

After the initial MLP setup, the next step was to select input variables, which was done 

using the forward selection method. This is a search method in which, for each iteration, a 

candidate variable is appended to the model and then evaluated, if the model output improves, 

the candidate is confirmed, otherwise discarded. As suggested by May et al. (2011), the forward 

selection was preceded by a variable ranking that classified variables based on their isolated 

forecasting strength. It was expected that, with this strategy, the resulting selections would be 

shorter, since most relevant variables were evaluated, and possibly selected, before the others. 

With the input variables selected, the next step was to adjust the lag of input variables and 

network depth, since both were constant up to this point. At each iteration of the algorithm, it 

tried to improve lag of each variable individually, reducing (when initially 52) or increasing 

(when initially 4) by 4 weeks at a time. In addition, for each variable, the algorithm tried to 

reduce output error by adjusting the network depth. The algorithm stop criterion was to 

complete an iteration over all variables without any improvement. 

After that, an additional step was taken to optimize the number of training epochs using 

the test dataset error as metric. It was done iteratively, increasing the number of epochs by 200 

in each iteration until there was no further improvement. The same process was also attempted 

using the Leaky ReLu activation function, which is a variation of ReLu that allows negative 

output values, as denoted by the following equation: 

 
𝑓(𝑥) = 𝑚𝑎𝑥(0, 𝑥) + 𝛼 ×𝑚𝑖𝑛⁡(0, 𝑥) (4) 

 

Where 𝛼 is a constant, in this case, set to 0.01. 

 

In order to maintain consistent results and reasonable computation times on the forward 

selection and the two optimization steps, a threshold of what was considered error reduction 
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was established. This threshold was set to 0.00009 normalized RMSE, approximately 0.03 mm 

when denormalized. 

 

Results and Discussion 

In the variables ranking step, each model produced different results, having no agreement 

about the variables relevance order. Based on these rankings, the forward selection algorithm 

selected an average of 5.5 variables per model, having RMSE of approximately 33.53 mm for 

the training dataset and 35.43 mm for the test dataset. Table 5 lists the algorithm results by 

model category. 

Comparing the selection results by input variables lag, the models with 52 weeks of lag 

(categories 1 and 2) were only 0.83 mm RMSE more accurate than the models with 4 weeks of 

lag (categories 3 and 4). Thus, despite having much more data to work with, the larger models 

were not able to effectively outperform the smaller models. This may indicate that much of the 

data included in those 52 weeks may have been irrelevant to the models. Comparing the ANN 

width strategies, results indicate that the strategy that produced larger ANNs performed slightly 

better (approximately 1.14 mm lower RMSE) for the models with shorter input lag (categories 

3 and 4). As for models with longer input lag (categories 1 and 2) and, therefore, larger input 

vectors, the additional capacity provided by the strategy may have been insufficient, since better 

results were found only for the training dataset. Regarding the selected variables, the most 

commonly selected were: W (87.5% of the models), NI_1.2 (70.8% of the models) and NI_3 

(58% of the models). Precipitation (P) was selected in only one model, suggesting low relevance 

as autoregressive variable in the studied scenario. 

 
Table 5 - Forward selection average results by model category. 

Model 

category 

Selected 

variables 

Input 

nodes 

Hidden 

nodes 

RMSE (mm) 

Training 

dataset 

Test 

dataset 

1 5.0 260 284 32.74 35.07 

2 5.5 286 620 32.10 36.35 

3 3.2 13 37 35.47 35.46 

4 8.3 33 115 33.80 34.84 

 

After the model adjustments step, the average RMSE was reduced in approximately 

3.23% for the training dataset and 4.31% for the test dataset in relation to the forward selection 

score. The ANN depth was adjusted to an average of 4.5 hidden layers on categories 1 and 2 

models, and 7.4 on categories 3 and 4. The greater depth on the later categories is related to the 

hidden layers width strategies. As the ANNs were smaller in these categories, more layers were 

required in order to increase the ANN capacity. As for input variables lag, categories 1 and 2 

were kept with an average of 51.4 weeks of lag, while in categories 3 and 4 it was increased to 

7.2 average. Table 6 lists the adjusted models, including selected variables, number of hidden 

layers and the average input lag. 
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Table 6 - Selected input variables for each created model. 

C 

(1) 
S (2) 

D 

(3) 

L 

(4) 
Selected variables 

1 3 5 51 MAX_T, NA_1.2, NA_3.4, NI_1.2, NI_3, NI_3.4, W 

1 22 7 52 MAX_T, NI_1.2, NI_3, NI_3.4, NI_4, W 

1 25 2 52 NA_3.4, NA_4, NI_1.2, NI_3, NI_3.4, SOI 

1 27 6 52 MIN_T, NI_1.2, W 

1 31 8 52 NI_1.2, NI_3 

1 36 5 51 MAX_T, NI_1.2, NI_3, NI_3.4, NI_4, W 

2 3 4 52 MEAN_T, NI_1.2, SOI, W 

2 22 4 51 MAX_T, MEAN_T, NI_1.2, W, NI_3, SOI 

2 25 3 51 NI_1.2, W, NI\3, TAR 

2 27 3 52 HU, MAX_T, NA_1.2, NI_1.2, SUN, TAR, W 

2 31 4 49 NA_1.2, NA_3, NI_1.2, NI_3, NI_3.4, W 

2 36 3 51 NI_1.2, NI_3, NI_3.4, NI_4, SUN, W 

3 3 11 20 SUN, W 

3 22 12 7 NA_4, NI_3.4, NI_4, P, SUN, TAR, W 

3 25 5 6 SUN, W 

3 27 5 6 SUN, W 

3 31 5 6 NI_3.4, SUN, TAR, W 

3 36 5 6 SUN, W 

4 3 7 4 MEAN_T, NA_3, NA_3.4, NI_1.2, NI_3, NI_3.4, NI_4, SUN, W 

4 22 6 5 
NA_1.2, NA_3, NA_3.4, NA_4, NI_1.2, NI_3, NI_4, SOI, SUN, 

TAR, W 

4 25 4 7 NA_1.2, NA_3, NI_1.2, NI_3, TAR, W 

4 27 6 6 MIN_T, NA_1.2, NA_4, NI_1.2, SOI, SUN, TAR, W 

4 31 12 8 HU, MEAN_T, NA_1.2, NI_1.2, NI_3, NI_3.4, SUN, TAR, W 

4 36 11 6 HU, NA_1.2, NI_1.2, NI_3, SUN, TAR, W 

(1) Model category; (2) station number; (3) ANN hidden layers; (4) average input lag. 

 

The MLP optimization step was able to further reduce RMSE by approximately 3.31% 

for the training dataset and by 1.56% for the test dataset on top of the previous step score, 

reaching an average RMSE of 31.35 mm for the training dataset and 33.38 mm for the test 

dataset. The optimal number of training epochs varied around 1717 epochs. As for activation 

function, ReLu was kept in 11 models while Leaky ReLu performed better in the remaining 13. 

Considering the test dataset RMSE by model category, the most accurate was category 3 (32.53 

mm), followed by category 4 (32.66 mm), category 1 (33.25 mm) and category 2 (35.07 mm). 

By station the most accurate was station 27 (30.55 mm), then station 22 (32.97 mm), station 31 

(33.18 mm), station 3 (33.28 mm), station 25 (34.11 mm) and station 36 (36.20 mm). Table 7 

shows the optimization results for all created models using the test dataset. 

When analyzing each model separately, considering the test dataset, the most accurate 

was in category 3, station 27, with 28.50 mm RMSE, while the worst was in category 2, station 

36, with 37.15 mm RMSE. Although station 27 had the largest dataset (Table 3), it was not 

possible to find a strong correlation between the size of the dataset and better model score. In 

this regard it is also important to assess the quality of data, considering not only the error 

introduced by gap filling methods, but also possible errors in the raw data. 
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Table 7 - MLP optimization step results on all models for the test dataset. 

Model 

Category 
Station 

Activation 

Function 

Training 

Epochs 

RMSE 

(mm) 

MAE 

(mm) 

1 3 ReLu 700 33.421 -1.880 

1 22 Leaky ReLu 300 33.191 8.671 

1 25 Leaky ReLu 1500 35.261 -3.907 

1 27 ReLu 500 29.424 -1.030 

1 31 Leaky ReLu 700 32.466 1.118 

1 36 ReLu 700 35.758 -0.064 

2 3 Leaky ReLu 1100 33.524 -2.534 

2 22 ReLu 300 34.548 7.469 

2 25 Leaky ReLu 500 35.629 3.582 

2 27 Leaky ReLu 300 35.281 8.123 

2 31 Leaky ReLu 700 34.312 1.439 

2 36 ReLu 700 37.152 -2.974 

3 3 ReLu 1500 32.686 0.496 

3 22 Leaky ReLu 4100 32.026 3.047 

3 25 ReLu 3500 32.739 4.791 

3 27 ReLu 2300 28.502 0.821 

3 31 ReLu 4500 33.342 -0.242 

3 36 Leaky ReLu 3900 35.895 2.744 

4 3 Leaky ReLu 1700 33.488 -3.284 

4 22 ReLu 3100 32.096 3.809 

4 25 Leaky ReLu 2900 32.825 3.017 

4 27 Leaky ReLu 1300 28.975 -0.341 

4 31 ReLu 1500 32.591 -0.070 

4 36 Leaky ReLu 2900 35.990 0.113 

 

When comparing error for each forecasting interval, a slight downward trend was 

identified. As illustrated in Figure 4, the error decreased as forecasting interval increased. This 

may indicate different dynamics for each interval, thus creating separate models for each 

interval may improve results. Lastly, Figure 5 illustrates all test dataset forecasts of 1 and 24 

weeks ahead with the best (category 3, station 27) and worst (category 2, station 36) models. 

As the illustration shows, both models, in both forecast intervals, were able to reasonably 

indicate the precipitation seasons. However, they were unable to follow the weekly variations, 

especially the higher peaks in the time series. 

 
Figure 4 - Mean error by forecasting interval. 
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Figure 5 - Test dataset forecasts: (a) best model, 1 week ahead; (b) worst model, 1 week ahead; (c) 24 weeks 

ahead, best model; (d) 24 weeks ahead, worst model. 

 
 

Conclusions 

This work presented the creation of weekly precipitation forecasting models for locations 

in the state of Tocantins, Brazil, using multilayer perceptron networks (MLP) and public 

climatic data. Gaps found in time series data were filled using the regional weighting method. 

The model creation started by ranking the weather and climatic variables by their forecasting 

capability, which was measured using the MLPs themselves. Based on these rankings, the 

model input variables were selected using the forward selection algorithm. After that, two 

optimization steps were taken. The first optimized the lag of each input variable and the ANN 

depth, leading to an average RMSE reduction of 3.77%. The second step optimized the number 

of training epochs and the node activation function, reducing RMSE by an additional 2.43%. 

The average RMSE of the final models was 31.35 mm for the training dataset and 33.38 mm 
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for the test dataset. Respectively, these values represent 9.83% and 10.46% of the maximum 

weekly precipitation found in the work dataset, which was of 319.1 mm. 

The results suggest that the created models are capable of reasonably good weekly 

precipitation forecasts, which can provide valuable information for farming, water resources 

management, urban planning and other related activies. Although there is possibly room for 

model improvement. Evaluating other types of ANN may help to achieve greater accuracy, 

however, the quality of input data tends to be of great relevance in machine learning models. 

Therefore, a more detailed review of the methods used to fill data gaps may help to produce 

more accurate training datasets, leading to overall error reduction. Considering the error 

distribution for each forecasting interval, as illustrated in Figure 4, building separate models for 

each interval may help to reduce model complexity, leading to lower error. Similarly, creating 

separate models for each target month, may also help reduce model complexity. 
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