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Abstract — Precipitation forecasting may be of great value for farming, helping to reduce crop
losses and irrigation costs, besides leveraging crop yield estimates. In Brazil, the state of
Tocantins has a great part of its economy based on agriculture, where precipitation forecasting
may help improve local production. Besides, rainfall forecasting can also contribute to urban
planning through the management of water resources, among other applications Atrtificial
Neural Networks (ANNs) have been used with relative success in precipitation forecasting for
different locations and climates. With that, this work presents a method for weekly precipitation
forecasting in six locations in the Brazilian state of Tocantins using ANNs and public climatic
data. For that, MultiLayer Perceptron (MLP) networks were trained with data from local
weather stations and El Nifio Southern Oscillation (ENSO) related indices. First, input variables
were selected using the forward selection algorithm. After that, ANN hyperparameters and
input variables lag were optimized. The average Root Means Square Error (RMSE) of the final
models was of 31.35 mm/week for the training dataset and 33.38 mm/week for the test dataset.
Respectively, these values represent 9,83% and 10,46% of the maximum weekly precipitation
found in the work dataset, which was of 319.1 mm. The results suggest that the created models
are capable of reasonably good weekly precipitation forecasts, providing valuable information
for farming, water resources management, urban planning and other related activies. Although
there is possibly room for model improvement.

Keywords: Precipitation forecasting. Artificial neural network. Irrigated Agriculture. Water
Resources Planning. Meteorology.

Um modelo de previsao de precipitacdo usando rede neural artificial na
regido central do ecotono no Brasil

Resumo — A previsdo de precipitacdo pode ser de grande valor para a agricultura, ajudando a
reduzir as perdas de safra e os custos de irrigagcdo, além de alavancar as estimativas de
produtividade das lavouras. No Brasil, 0 estado do Tocantins tem grande parte de sua economia
baseada na agricultura, onde a previséo da precipitacdo pode ajudar a melhorar a producéo local.
Além disso, a previséo de precipitacdo também pode contribuir com o planejamento urbano por
meio da gestdo de recursos hidricos, entre outras aplicacGes. Redes Neurais Artificiais (RNAS)
tém sido usadas com relativo sucesso na previsdo de precipitacdo para diferentes locais e climas.
Com isso, este trabalho apresenta um método para previsao de precipitacdo semanal em seis
localidades do estado do Tocantins, utilizando RNAs e dados climaticos publicos. Para isso,
redes Perceptron Multicamadas (MLP) foram treinadas com dados de estagdes meteorologicas
locais e indices relacionados ao El Nifio Oscilagdo Sul (ENSO). Primeiro, as variaveis de
entrada foram selecionadas usando o algoritmo de selecdo direta. Depois disso, os hiper
parametros da RNA e a defasagem das variaveis de entrada foram otimizados. A raiz média do
erro quadratico (RMSE) dos modelos finais foi de 31,35 mm / semana para o conjunto de dados
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de treinamento e 33,38 mm / semana para o conjunto de dados de teste. Respectivamente, esses
valores representam 9,83% e 10,46% da precipitacdo maxima semanal encontrada no conjunto
de dados do trabalho, que foi de 319,1 mm. Os resultados sugerem que os modelos criados sdo
capazes de previsdes de precipitacdo semanais razoavelmente boas, fornecendo informacdes
valiosas para agricultura, gestdo de recursos hidricos, planejamento urbano e outras atividades
relacionadas. Embora possivelmente haja espaco para melhorias no modelo.
Palavras-chave: Previsdo de precipitacdo. Rede Neural Artificial. Agricultura Irrigada. Gestéo
de Recursos Hidricos. Meteorologia.

Introduction

In meteorology, precipitation refers to the process in which water vapor condenses in the
atmosphere and falls back to the surface in any form, such as rain, dew, snow and sleet. As with
many human activities, agriculture can be strongly impacted by precipitation, depending on
how much, for how long and when precipitation occurs. Therefore, precipitation-forecasting
models can provide valuable information to support decision-making. In this regard, Asseng et
al. (2016) suggest that short-term rainfall forecasts may benefit productivity in dryland
agriculture, supporting decisions about the sowing time and application of fertilizers and
fungicides. Cardoso et al. (2010) suggest that the use of precipitation forecast data in soybean
yield estimates can lead to more reliable estimates. As suggested by Cao et al. (2019), rainfall
forecasts can also help to optimize irrigation scheduling and reduce water expenditure.

Artificial Neural Networks (ANNs), MLP (MultiLayer Perceptron) in this research, are a
type of supervised machine learning which are capable to learn nonlinear relationships between
variables found in the given input data. For being a data-driven technique, no actual knowledge
of the equations that represent such relationships is required when creating an ANN model.
This non-parametric characteristic, along with the often-good results, make ANNSs great tools
for complex problems, such as precipitation forecasting.

Many works have used ANNSs to forecast precipitation and rainfall using different weather
variables and climatic indices as model input data. While weather variables can provide
information about the atmospheric conditions of a given location, climatic indices can indicate
climate anomalies that may be related to large-scale phenomena, such as the EI Nifio Southern
Oscillation (ENSO). In a very simplified manner, ENSO is a variation of the sea surface
temperature (SST) and the air pressure over the equatorial Pacific Ocean. Extreme weather
conditions, such as floods and droughts, can be experienced during ENSO events in parts of
South America, South Asia and Australia (SCAIFE et al., 2019). As a result, ENSO can cause
major impact on the economy, especially in agribusiness (SCAIFE et al., 2019; ANDERSON
etal., 2017).

In this regard, Abbot and Marohasy (2014) have created ANN models for rainfall
forecasting using local weather variables and climatic indices, reporting better results than the
General Circulation Model (GCM) used by local government institutions in Australia. Aspects
of the soil can also be considered as predictor variables in these models. Soil water content,
which refers to the amount of water the soil can retain, was used by Esteves et al. (2019) as one
of the input variables of an ANN model used for rainfall forecasting. By applying ANNSs to
Doppler weather radar data, Dutta et al. (2011) was able to improve the estimation of rainfall
intensity compared to traditional estimation methods. In addition, a relevant list of works on
the topic, published between 2012 and 2017, is found in Abbot and Marohasy (2017).

During model construction, the ANNSs learn the mechanics of the target problem directly
from the data provided to the network, usually meaning that as more data is available more is
learned, thereby reducing output error. When working with time series data, such as weather
data, missing observations can be very common, whether due to equipment failure or staff
unavailability, when working with non-automatic weather stations. There are many data gap
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filling techniques, ranging from simple arithmetic mean to linear regression and the ANN
models themselves. Some of these techniques were evaluated by de Oliveira et al. (2010) for
annual precipitation data, and by Bier and Ferraz (2017) for monthly precipitation and air
temperature.

One of the challenging tasks of ANN model creation is input variable selection, where
the available variables are evaluated in order to find the best combination of variables for the
problem. As ANNSs are usually applied to nonlinear problems, some works have used the ANN
models themselves to guide the variable selection process (ABBOT and MAROHASY, 2014,
2017). This approach usually requires a lot of computational power, depending on the amount
of input data and variables combinations available. That said, some methods tend to use linear
correlation analysis for that task, whether to select the final combination or to identify the best
candidates for later selection using ANNSs (LEE et al., 2018; AKRAMI et al., 2013).

GCMs are complex mathematical models that take into account the general circulation of
the global atmosphere and the oceans, serving as a basis for weather forecasting and climate
study. When using ANN models, it is possible to work on a much smaller scale, focusing on a
small subset of variables that may impact on a large portion of the problem. In fact, reducing
the number of variables, aside from reducing the model complexity, reduces the computational
power required to run the model.

The state of Tocantins, in the north region of Brazil, has most of its economy based on
the agribusiness, where livestock farming takes the lead, followed by grains cropping,
especially soybeans. In Tocantins, the soil suitable for the cultivation of grains is found in
several patches over the 277,720 Km2 of territory, where the predominant biome is the
Brazilian Cerrado. This, along with precipitation conditions that vary depending on the region,
lead to very dispersed producing regions (SECRETARIA DO PLANEJAMENTO E
ORCAMENTO DO ESTADO DO TOCANTINS, 2016).

In Brazil, the Meteorology National Institute (INMET) is a federal agency that publicly
provides local weather information making use of dozens of weather stations across the country.
Likewise, data for the ENSO climatic indices are provided by the National Oceanic
Atmospheric and Administration (NOAA), which is a United States government agency. Both
organizations provide time series data which can be used as input for ANN forecasting models.

Considering the exposed scenario, this work aims to create a weekly precipitation
forecasting model of 24 weeks ahead in the state of Tocantins, having as output the accumulated
precipitation of each of the forecasted weeks. In order to achieve this objective, ANN models
were created using up to 52 weeks of lagged data as input. The input data included INMET
local weather stations observations and ENSO climatic indices, as provided by NOAA.
Although many works have applied ANNSs to precipitation forecasting, none of the works found
during review were created for locations in the state of Tocantins. It is expected that the
proposed model may provide reasonably accurate information and thus contribute to the local
agribusiness activities and research.

Materials and Methods

The INMET provides data from weather stations all over Brazilian territory, having 194
conventional stations and 576 automatic stations available for query on their website® at the
time of this paper. While conventional stations require dedicated staff to take readings on site,
automatic stations can transmit data automatically through wireless networks (INSTITUTO
NACIONAL DE METEOROLOGIA, 2011). Another aspect observed in this stations network
was that, in general, conventional stations were installed earlier in time compared to automatic
stations, consequently having longer time series available.

8 http://www.inmet.gov.br/
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Covering the Tocantins state territory, there were 20 automatic and 6 conventional
stations. As depicted in Figure 1, those conventional stations were dispersed throughout the
state, which allowed a reasonable overview of the weather on the state. Considering the territory
coverage and the longer time series, the 6 conventional stations in Tocantins were selected as
forecasting target for this work. Other stations, including those located in neighbor states, were
used during the gap filling process, as described later in this work. Table 1 lists all the stations
used in this work.

Figure 1 - Conventional weather stations located in Tocantins state territory.
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Table 1 - INMET weather stations used in this work.

Legend

_!x
@ Weather station
location

No. Area WMO(1) | T(2) | U(3) | Latitude(®) | Longitude(®) | Altitude(m)
1 Almas/TO 86627 A S |-11.284098 | -47.212125 503.0
2 Araguacu/TO 86648 A S | -12.592213 | -49.528738 231.85
3 Araguaina/TO 82659 C | T | -7.103778 | -48.20133 231.85
4 Araguaina/TO 81900 A S | -7.103954 | -48.201231 231.85
5 Araguatins/TO 81821 A S | -5.643725 | -48.111839 131.0
Campos
6 Lindos/TO 81902 A S | -8.154665 | -46.639323 427.0
7 Carolina/MA 82765 C S | -7.337292 | -47.459856 182.94
8 Carolina/MA 81901 A S | -7.337269 | -47.459839 183.0
9 Colinas do 81939 | A | S | -8.092708 -48.478605 |  200.0
Tocantins/TO
10 Conceicéo do 82861 C S | -8.259237 | -49.263816 179.02
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Araguaia/PA
Conceicdo do
1| Araguaia/PA 81940 | A | S | -830361 | -49.28277 176.0
12 | Dian6polis/TO | 86632 | A | S |-11.594448 @ -46.847209 728.0
13 Estreito/MA 81863 | A | S | -6.653272 | -47.418241 183.0
Formoso do
14 | prguaiaTo 86629 | A | S |-11.887377 @ -49.608215 215.0
15 Gurupi/To 86630 | A | S | -11.745782 -49.049703 279.0
16 | ImperatrizZ[MA | 82564 | C | S | -5.536521 | -47.478943 126.33
17 | ImperatrizZMA | 81822 | A | S | -5.555723 | -47.459794 118.0
Lagoa da
18 | confusdolTo 86602 | A | S |-10.828286 -49.847882 178.0
19 | Marianopolisdo | g19g3 | A | 5 | 9576389 | -49.72333 |  187.0
Tocantins/TO
20 | Mateiros/TO 86608 | A | S | -10.434441 -45921941 791.0
p1 | Mome Alegrede | gagzq | A | s 13253521 -46.890326 |  551.0
Goias/GO
22 Palmas/TO 83033 | C | T | -10.190897 | -48.301822 201.68
23 Palmas/TO 86607 | A | S |-10.190744 -48.301811 202.0
24 Parana/TO 86650 | A | S | -12.614893 -47.871917 285.0
Pedro
25 Afonso/TO 82863 | C | T | -8.968576 | -48.177264 189.53
26 | Pedro Afonso/TO | 81941 A S -8.968677 -48.177259 190.0
27 Peixe/TO 83228 | C | T | -12.015387 | -48.544866 252.24
28 Peixe/TO 86649 | A | S | -12.015377 -48.544517 251.0
29 Pium/TO 86603 | A | S |-10.476944 = -49.629475 161.0
30 | Porangatu/GO n/a A S |-13.309528 = -49.117478 365.0
31 Porto 83064 | C | T | -10.710716  -48.406362 243.28
Nacional/TO
32 | RioSono/TO 81981 | A | S | -9.793363 @ -47.132732 291.0
Santa Fé do
B | paraguaialTo 81898 | A | S | -7.124191 @ -48.781267 171.0
34 | SanmaRosado | geea) A | g | 11420018 -48.184889 306.0
Tocantins/TO
Séo Miguel do
35 | Araquala/GO 86646 | A | S |-12.820489 = -50.335969 210.0

(1) World Meteorological Organization code; (2) station type, being automatic (A) or conventional (C); (3)
station usage, being forecasting target (T) or support (S).

The weather data from conventional stations was collected directly from the INMET
website. This data contained daily observations realized at 09:00 AM and 09:00 PM local time
(UTC-3), though, each variable was available only once a day. For instance, precipitation was
available only at 09:00 AM. In order to transform those into single daily records, each
observation was composed of data from the same day at 09:00 PM and data from the next day
at 09:00 AM. Since each observation represents the mean or accumulated value of the last 24
hours, observations at 09:00 AM include only 9 hours of the referred day. Therefore, it was
expected to get a better representation of each day with the described composition.

Historical data for the automatic stations was not available on the institute's website,
having been delivered by mail, upon request. In this data, the observations were available for
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each hour of the day. When transforming each variable into single daily records only those days
with all 24 observations available were considered. In order to maintain consistency with the
conventional stations data, the same time scheme was used here. For example, precipitation
data was composed of observations from 10:00 PM on the same day up to 09:00 AM on the
following day.

From INMET data the following variables were extracted: minimum air temperature
(MIN_T), maximum air temperature (MAX_T), compensated mean air temperature
(MEAN_T), precipitation (P), relative air humidity (HU), photoperiod (SUN), wind speed (WS)
and tar evaporation (TAR).

Moving on to the ENSO indices, their relevance to the current problem is related to
teleconnections, which are statistical correlations between climatic variables whose observation
locations are separated by very far distances. As explained by Lee et al. (2018), due to the
general circulation of the atmosphere and the oceans, regional climates are linked together in a
global scale system. As suggested by other works (ABBOT and MAROHASY, 2014, 2017,
MAROHASY and ABBOT, 2015; LEE et al., 2018), it is a relevant candidate as input for
precipitation forecasting models.

ENSO observation data were collected from NOAA website*, where monthly data were
available for the following variables: Southern Oscillation Index (SOI), Nifio 1+2 region SST
(NI_1.2), Nifio 1+2 SST anomaly (NA_1.2), Nifio 3 SST (NI_3), Nifio 3 SST anomaly (NA_3),
Nifio 3.4 SST (NI_3.4), Nifio 3.4 SST anomaly (NA_3.4), Nifio 4 SST (NI_4) and Nifio 4 SST
anomaly (NA_4). Observations from Nifio regions were available from January 1982 through
December 2019, while SOI was available from January 1951 through December 2019.
Dataset Creation

In order to build a weekly dataset, the year was divided into 52 weeks, always starting on
the 1st of January of each year, despite the actual day of the week on the calendar. February 29,
in case of leap years, and December 31 were inserted as additional days in weeks 9 and 52,
respectively. During daily to weekly format transformation, each variable was processed
individually, considering only those weeks where data was available for all days of that week.

Many gaps have been found in the time series of the weather stations data, which has
reduced the actual amount of data available for ANN training. When modeling time series
problems with ANNs, data is usually provided to the network as an ordered sequence, where
missing steps can invalidate the entire sequence. This structure is illustrated in Figure 2. In
order to reduce the problem, estimated data can be used to fill those gaps. As evaluated by de
Oliveira et al. (2010) and Bier and Ferraz (2017), several methods can be used to fill gaps in
time series of precipitation and air temperature. In addition, these methods are also suggested
for application in other weather variables (BIER and FERRAZ, 2017). Among those methods,
regional weighting was proved to be reasonably simple and effective. Estimation of a missing
observation using this method is given by the following equation:

1 M, 1)
Dx :;Z—Di

Where D, the weekly estimated value, D; is the corresponding weekly value from the it"
neighbour station, M, is the weekly mean value from the target station, M; is weekly mean
value from the i** neighbour and n is the number of neighbour stations.

Figure 2 - Input sequence for ANN training

4 https://www.ncdc.noaa.gov/teleconnections/enso/indicators/soi/
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lag(n) lag(1) lag(0) | lead(1) | lead(2) lead(m)

Past (observed data) Future (expected output))

The first step to apply this method is to determine which neighbor stations will provide
data for estimation. Tabony (1983), cited by Bier and Ferraz (2017), suggests that neighbors
should be selected based on their statistical correlation with the target station. Due to this fact,
different neighbors should be selected for each estimated variable. The author also suggests that
neighbors should be positioned the most evenly as possible around the target station, increasing
weather representation. For this work, neighbor stations were limited to a range of 200 Km
around the target station. After that, correlation was calculated for each variable, where those
stations with correlation higher than 0.7 were selected. Table 2 lists the forecasting target
stations with their respective neighbors for each weather variable.

Table 2 - Target stations with their respective neighbors for each variable.

Neighbor stations by variable

St.
D p | maxT MINT | S9N vEAN T HU | Ws
TAR

4,8,9,33,
so 4871025 493313 o o000 13,5267
3 % 33,513,026  26,17,25  foor NA A0 6, n/a
17,9,16,6,11 | 8,6,5,11,7 101 8, 11, 25,17,
16, 10
23,31, 25
23,31, 26, 32, 3L,

34, 5o aane | 1826 94 | 2731 322812534, 26,3234
218, e e ar s ee 19,3126 29,19, 34,32
23 | A8 Lo e LSk 23 1,18, 15, 27,

28, 27
28
10,7,31,3,

911,3,4,19,  22,8,11,7, | 7,10, | 10,23,7,8,3, 11,19,4, 22,

25| 26 | 222310, | 19 31,3, | 313 32 22 4 19, 8, nia
31.6.7,826 | 432926 22 6.9 31,26 | 23.9 6 32,
26
o 28 34,15, | 23,
15 | 28,1534,24, 1 28,35, 15, 15,28, 2, 24,18, 18,2.1,35 | 35
14.2.31,30. | 34 24 30,
27| 18, | (o SLS% ) SHehS 231 35,3429 29, 14
34,2, 120 en 29218 04 1,30,31,12, 14 14 31 24 | 12,
28 29, 3L, 12. 23, 22. 30| 34, 30
32,18, 29,
Lap 223405 o 32,18,29,12,1, 571020
29, 28. 27,1, 22,25 | 19,34, 14,
31 34 23, 28, 22, 14, nia
18, 32, 14, 19, 27 | 15,26, 23, 28,
18 756 25,12 25,27 22 25 27 152623,
25, 25, 28, 22. 25, 27
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34, 27, 21, 20,

36 1 1 08 24 12

1,12 27

27,20,24,28, | 24,34,28,1, 20,
34,1,21,12 |20, 27,21,12| 34,12

(1) Target station number.

ANNSs are supervised learning techniques, which means that the network learns by
adjusting itself to the provided data. Thus, the model error is measured by the difference
between estimated output and the expected output, in other words, output error. In order to
avoid erroneous model evaluation, values estimated using the regional weighting were used
only as predictor variables, never as expected output.

As initially proposed, the ANN models are to forecast up to 24 weeks ahead using data
from the 52 past weeks. Following this scheme, each dataset row is composed of data from all
predictor variables from the last 52 weeks and the forecasted variable (P) from the next 24
weeks. Due to this aspect, the gap filling method had a great impact on the number of rows
available for usage. The final dataset numbers are presented in Table 3.

Table 3 - Available data rows for each target weather station.

Available rows
Station No. Area After gap filling Be]fﬁlriengap
3 Araguaina 1180 583
22 Palmas 923 204
25 Pedro Afonso 1215 429
27 Peixe 1492 596
31 Porto Nacional 750 11
36 Taguatinga 924 125

Lastly, the data was divided into training and testing data, respectively 70% and 30% of
the available data. In addition, to avoid statistical bias between variables of different scales, all
values were normalized between 0 and 1 using the following equation:

N = XM @)

Ma, — Mi,

Where N, is the normalized value of x, Mi,is x minimum value and Ma,, is x maximum
value.

The final datasets were composed of the 17 weather and climatic variables described in
Material e Methods Section, and the number of the corresponding week (W).
The ANN Model

In short, ANNs are computational techniques that can learn linear and nonlinear relations
between variables found in each dataset. There are many ANN types, where MLP is among the
most common types. These networks are composed of many interconnected nodes arranged in
layers, where data flows from input to output layer. Each node is a processing unit which applies
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an activation function over the sum of all weighted input values, as denoted by the following
equation (VELO et al., 2014):

n 3)
Oi = f WoXg Z WjX]'

j=1

Where 0; is the i** node output value, f is the activation function, w; is the weight value,
x; is the input value, wy is a threshold value (usually called bias), x, is always 1, and n is the
number of input connections. In order to fit the network to the given model, sample data is
repeatedly provided to the network, where output error is propagated back through the network
for weights adjustment. Thus, if it was properly constructed, the network tends to slowly
converge to optimal error. Figure 3 illustrates the general structure of an MLP.

Figure 3 - General structure of a multilayer perceptron network.
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Input layer Hidden layers Output layer

Once the ANN type is established, it is required to set the network hyperparameters,
which are responsible for defining a great part of the network's behavior. Although being
specific to the network mechanisms, their optimal values are often related to the applied model.
In this work, MLPs were implemented using the Deep Learning for Java (DL4J)° library, and
hyperparameters were set after trial and error.

MLP learning rate was set to 0.0001 and learning momentum to 0.90. Weights were
randomly initialized, and the number of training epochs was limited to 300. Rectified Linear
Units (ReLu) was used as node activation function and Mean Square Error (MSE) as loss
function. ReLu is a nonlinear function that, for values below zero, returns zero, otherwise
repeats the input value. ReLu has been used for many types of neural networks because a model
that uses it is easier to train and often achieves better performance. Root Mean Square Error
(RMSE) was the base metric for model analysis and optimization, while mean absolute error
(MAE) was only used only to further illustrate results. In RMSE the errors are squared before
they are averaged, the RMSE gives a relatively high weight to large errors. This means the
RMSE is most useful when large errors are particularly undesirable. And the MAE s a linear
score which means that all the individual differences are weighted equally in the average.

5 https://deeplearning4j.org/
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The size of the network proved to be very susceptible to the number of input variables.
Thus, it was not optimal to keep a constant network size during model creation. The network
depth (number of hidden layers) was kept as 2 until the model adjustment step, where it was
optimized, as later described. For the number of nodes per hidden layer (layer width),
reasonable results were found when using two heuristic strategies based on the size of the input
and the output layers. The first strategy uses the average of those values, while the second uses
the sum. On both cases, all hidden layers were set to the same width. As for the output layer, it
always had 24 nodes, as each node provided output for each of the forecasted weeks.

As initially proposed, this work evaluated up to 52 weeks of lagged data for each input
variable. For this, two strategies were established. The first strategy selects variables with
maximum lag and tries to optimize the model by reducing the lag of each variable at a time.
The second strategy selects variables with 4 weeks of lag and tries to optimize the model by
increasing the lag of each variable.

In order to evaluate all combinations of input lag strategies and layer width strategies, 4
different models were created for each of the 6 target stations as enumerated in Table 4. It
should be noted, however, that these model categories are numbered only for later reference,
since there is not sequential relationship between them.

Table 4 - The model categories created for each station.

N.° | Initial input lag | ANN width strategy
1 52 weeks Average

2 52 weeks Sum

3 4 weeks Average

4 4 weeks Sum

After the initial MLP setup, the next step was to select input variables, which was done
using the forward selection method. This is a search method in which, for each iteration, a
candidate variable is appended to the model and then evaluated, if the model output improves,
the candidate is confirmed, otherwise discarded. As suggested by May et al. (2011), the forward
selection was preceded by a variable ranking that classified variables based on their isolated
forecasting strength. It was expected that, with this strategy, the resulting selections would be
shorter, since most relevant variables were evaluated, and possibly selected, before the others.

With the input variables selected, the next step was to adjust the lag of input variables and
network depth, since both were constant up to this point. At each iteration of the algorithm, it
tried to improve lag of each variable individually, reducing (when initially 52) or increasing
(when initially 4) by 4 weeks at a time. In addition, for each variable, the algorithm tried to
reduce output error by adjusting the network depth. The algorithm stop criterion was to
complete an iteration over all variables without any improvement.

After that, an additional step was taken to optimize the number of training epochs using
the test dataset error as metric. It was done iteratively, increasing the number of epochs by 200
in each iteration until there was no further improvement. The same process was also attempted
using the Leaky ReLu activation function, which is a variation of ReLu that allows negative
output values, as denoted by the following equation:

f(x) =max(0,x) + a X min (0, x) 4)
Where « is a constant, in this case, set to 0.01.

In order to maintain consistent results and reasonable computation times on the forward
selection and the two optimization steps, a threshold of what was considered error reduction
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was established. This threshold was set to 0.00009 normalized RMSE, approximately 0.03 mm
when denormalized.

Results and Discussion

In the variables ranking step, each model produced different results, having no agreement
about the variables relevance order. Based on these rankings, the forward selection algorithm
selected an average of 5.5 variables per model, having RMSE of approximately 33.53 mm for
the training dataset and 35.43 mm for the test dataset. Table 5 lists the algorithm results by
model category.

Comparing the selection results by input variables lag, the models with 52 weeks of lag
(categories 1 and 2) were only 0.83 mm RMSE more accurate than the models with 4 weeks of
lag (categories 3 and 4). Thus, despite having much more data to work with, the larger models
were not able to effectively outperform the smaller models. This may indicate that much of the
data included in those 52 weeks may have been irrelevant to the models. Comparing the ANN
width strategies, results indicate that the strategy that produced larger ANNSs performed slightly
better (approximately 1.14 mm lower RMSE) for the models with shorter input lag (categories
3 and 4). As for models with longer input lag (categories 1 and 2) and, therefore, larger input
vectors, the additional capacity provided by the strategy may have been insufficient, since better
results were found only for the training dataset. Regarding the selected variables, the most
commonly selected were: W (87.5% of the models), NI_1.2 (70.8% of the models) and NI_3
(58% of the models). Precipitation (P) was selected in only one model, suggesting low relevance
as autoregressive variable in the studied scenario.

Table 5 - Forward selection average results by model category.

RMSE (mm)
Model Selected Input Hidden
category variables nodes nodes Training Test
dataset dataset
1 5.0 260 284 32.74 35.07
2 55 286 620 32.10 36.35
3 3.2 13 37 35.47 35.46
4 8.3 33 115 33.80 34.84

After the model adjustments step, the average RMSE was reduced in approximately
3.23% for the training dataset and 4.31% for the test dataset in relation to the forward selection
score. The ANN depth was adjusted to an average of 4.5 hidden layers on categories 1 and 2
models, and 7.4 on categories 3 and 4. The greater depth on the later categories is related to the
hidden layers width strategies. As the ANNs were smaller in these categories, more layers were
required in order to increase the ANN capacity. As for input variables lag, categories 1 and 2
were kept with an average of 51.4 weeks of lag, while in categories 3 and 4 it was increased to
7.2 average. Table 6 lists the adjusted models, including selected variables, number of hidden
layers and the average input lag.
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Table 6 - Selected input variables for each created model.

8) S(2) (D?)) t‘) Selected variables

1 3 |5 51 |[MAX T,NA 1.2, NA 3.4,NI 1.2, Nl 3,NI 3.4, W

1 22 |7 52 |[MAX_T,NI 1.2, NI _3,NI _3.4,NIl 4 W

1 25 |2 52 |NA 3.4,NA 4,NI 1.2, NI _3, NI 3.4, SOI

1 27 |6 52 |MIN_T,NI 1.2, W

1 31 |8 52 |NI _1.2,NI 3

1 36 |5 51 |MAX_T,NI 1.2, NI 3, NI 3.4, NI 4, W

2 3 4 52 |MEAN_T, NI 1.2, SOI, W

2 22 |4 51 |[MAX_T,MEAN T,NI 1.2, W, NI_3, SOI

2 25 |3 51 NI 1.2, W, NI\3, TAR

2 27 |3 52 |HU, MAX T, NA 1.2,NI 1.2, SUN, TAR, W

2 31 4 49 NA12N_3NI_2NI3NI34W

2 36 |3 51 NI 1.2, NI_3, NI 3.4, NI 4, SUN, W

3 3 11 20 |SUN, W

3 22 |12 7 |NA_4,NI 3.4, NI 4 P, SUN, TAR, W

3 25 |5 6 |SUN, W

3 27 |5 6 |SUN, W

3 31 |5 6 |NI 3.4, SUN, TAR, W

3 36 |5 6 |SUN, W

4 3 |7 4 |MEAN T,NA 3,NA 3.4,NI 1.2, NI _3,NI 3.4, NI 4, SUN, W

4 .r c |NA_12,NA 3, NA 3.4, NA 4, NI_1.2, NI_3, NI_4, SOI, SUN,
TAR, W

4 25 |4 7 |NA 1.2,NA 3,NI 1.2, NI 3, TAR, W

4 27 |6 6 |[MIN_T,NA 1.2, NA 4, NI 1.2, SOI, SUN, TAR, W

4 31 12 8 |HU, MEAN T,NA 1.2, NI 1.2, NI 3, NI 3.4, SUN, TAR, W

4 36 11 6 |HU,NA 1.2, NI 1.2, NI 3, SUN, TAR, W

(1) Model category; (2) station number; (3) ANN hidden layers; (4) average input lag.

The MLP optimization step was able to further reduce RMSE by approximately 3.31%
for the training dataset and by 1.56% for the test dataset on top of the previous step score,
reaching an average RMSE of 31.35 mm for the training dataset and 33.38 mm for the test
dataset. The optimal number of training epochs varied around 1717 epochs. As for activation
function, ReLu was kept in 11 models while Leaky ReLu performed better in the remaining 13.
Considering the test dataset RMSE by model category, the most accurate was category 3 (32.53
mm), followed by category 4 (32.66 mm), category 1 (33.25 mm) and category 2 (35.07 mm).
By station the most accurate was station 27 (30.55 mm), then station 22 (32.97 mm), station 31
(33.18 mm), station 3 (33.28 mm), station 25 (34.11 mm) and station 36 (36.20 mm). Table 7
shows the optimization results for all created models using the test dataset.

When analyzing each model separately, considering the test dataset, the most accurate
was in category 3, station 27, with 28.50 mm RMSE, while the worst was in category 2, station
36, with 37.15 mm RMSE. Although station 27 had the largest dataset (Table 3), it was not
possible to find a strong correlation between the size of the dataset and better model score. In
this regard it is also important to assess the quality of data, considering not only the error
introduced by gap filling methods, but also possible errors in the raw data.
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Table 7 - MLP optimization step results on all models for the test dataset.

Model Station Activation Training RMSE MAE
Category Function Epochs (mm) (mm)
1 3 ReLu 700 33.421 -1.880
1 22 Leaky ReLu 300 33.191 8.671
1 25 Leaky RelLu 1500 35.261 -3.907
1 27 ReLu 500 29.424 -1.030
1 31 Leaky ReLu 700 32.466 1.118
1 36 ReLu 700 35.758 -0.064
2 3 Leaky RelLu 1100 33.524 -2.534
2 22 ReLu 300 34.548 7.469
2 25 Leaky ReLu 500 35.629 3.582
2 27 Leaky RelLu 300 35.281 8.123
2 31 Leaky ReLu 700 34.312 1.439
2 36 ReLu 700 37.152 -2.974
3 3 ReLu 1500 32.686 0.496
3 22 Leaky ReLu 4100 32.026 3.047
3 25 ReLu 3500 32.739 4.791
3 27 ReLu 2300 28.502 0.821
3 31 ReLu 4500 33.342 -0.242
3 36 Leaky RelLu 3900 35.895 2.744
4 3 Leaky ReLu 1700 33.488 -3.284
4 22 ReLu 3100 32.096 3.809
4 25 Leaky RelLu 2900 32.825 3.017
4 27 Leaky ReLu 1300 28.975 -0.341
4 31 ReLu 1500 32.591 -0.070
4 36 Leaky RelLu 2900 35.990 0.113

When comparing error for each forecasting interval, a slight downward trend was
identified. As illustrated in Figure 4, the error decreased as forecasting interval increased. This
may indicate different dynamics for each interval, thus creating separate models for each
interval may improve results. Lastly, Figure 5 illustrates all test dataset forecasts of 1 and 24
weeks ahead with the best (category 3, station 27) and worst (category 2, station 36) models.
As the illustration shows, both models, in both forecast intervals, were able to reasonably
indicate the precipitation seasons. However, they were unable to follow the weekly variations,
especially the higher peaks in the time series.

Figure 4 - Mean error by forecasting interval.
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Figure 5 - Test dataset forecasts: (a) best model, 1 week ahead; (b) worst model, 1 week ahead; (c) 24 weeks
ahead, best model; (d) 24 weeks ahead, worst model.
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Conclusions

This work presented the creation of weekly precipitation forecasting models for locations
in the state of Tocantins, Brazil, using multilayer perceptron networks (MLP) and public
climatic data. Gaps found in time series data were filled using the regional weighting method.
The model creation started by ranking the weather and climatic variables by their forecasting
capability, which was measured using the MLPs themselves. Based on these rankings, the
model input variables were selected using the forward selection algorithm. After that, two
optimization steps were taken. The first optimized the lag of each input variable and the ANN
depth, leading to an average RMSE reduction of 3.77%. The second step optimized the number
of training epochs and the node activation function, reducing RMSE by an additional 2.43%.
The average RMSE of the final models was 31.35 mm for the training dataset and 33.38 mm
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for the test dataset. Respectively, these values represent 9.83% and 10.46% of the maximum
weekly precipitation found in the work dataset, which was of 319.1 mm.

The results suggest that the created models are capable of reasonably good weekly
precipitation forecasts, which can provide valuable information for farming, water resources
management, urban planning and other related activies. Although there is possibly room for
model improvement. Evaluating other types of ANN may help to achieve greater accuracy,
however, the quality of input data tends to be of great relevance in machine learning models.
Therefore, a more detailed review of the methods used to fill data gaps may help to produce
more accurate training datasets, leading to overall error reduction. Considering the error
distribution for each forecasting interval, as illustrated in Figure 4, building separate models for
each interval may help to reduce model complexity, leading to lower error. Similarly, creating
separate models for each target month, may also help reduce model complexity.
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