Uma revisão sistemática da escória de ferro-níquel em materiais à base de cimento como aglomerante e agregado
DOI:
https://doi.org/10.47236/2594-7036.2025.v9.1638Palavras-chave:
Aglomerante, Agregado miúdo, Escória de ferro-níquel, Materiais à base de cimento.Resumo
Esta revisão analisa estudos sobre a utilização da escória de ferro-níquel (FNS) como substituto parcial do aglomerante e substituto parcial ou total do agregado miúdo em materiais à base de cimento de forma sistemática. Para tal, a composição química da FNS foi descrita, bem como seu efeito em pastas, argamassas e concretos em relação às propriedades no estado fresco e endurecido, como resistência à compressão, compressão diametral e flexão e módulo de elasticidade. Tempos de pega e a durabilidade em relação à íons cloreto também foram analisados. Em geral, observou-se que a utilização da FNS como agregado miúdo em substituições parciais tende a melhorar as propriedades mecânicas, no entanto, reduzindo a trabalhabilidade. A FNS como aglomerante reduziu a resistência à compressão na maioria das amostras, mas em certos teores e situações ainda pode ser de interesse para o uso na construção civil. A penetração de íons cloreto foi majoritariamente reduzida com a presença de FNS na mistura.Downloads
Métricas
Referências
AHMAD, Waqas; KHAN, Mehran; SMARZEWSKI, Piotr. Effect of short fiber reinforcements on fracture performance of cement-based materials: A systematic review approach. Materials, v. 14, n. 7, p. 1745, 2021. DOI: https://doi.org/10.3390/ma14071745
BAE, Sung-Ho; LEE, Jae-In; CHOI, Se-Jin. Characteristics of mortars with blast furnace slag powder and mixed fine aggregates containing ferronickel-slag aggregate. Materials, v. 14, n. 19, p. 5879, 2021. DOI: https://doi.org/10.3390/ma14195879
BAO, Jiuwen et al. Application of ferronickel slag as fine aggregate in recycled aggregate concrete and the effects on transport properties. Journal of Cleaner Production, v. 304, p. 127149, 2021. DOI: https://doi.org/10.1016/j.jclepro.2021.127149
BOUASRIA, Manal et al. Partial substitution of cement by the association of Ferronickel slags and Crepidula fornicata shells. Journal of Building Engineering, v. 33, p. 101587, 2021. DOI: https://doi.org/10.1016/j.jobe.2020.101587
CHEN, Yuning et al. Sustainable use of ferronickel slag in cementitious composites and the effect on chloride penetration resistance. Construction and Building Materials, v. 240, p. 117969, 2020. DOI: https://doi.org/10.1016/j.conbuildmat.2019.117969
CHO, Bong-Suk et al. Effect of ferronickel slag powder on microhydration heat, flow, compressive strength, and drying shrinkage of mortar. Advances in Civil Engineering, v. 2018, n. 1, p. 6420238, 2018. DOI: https://doi.org/10.1155/2018/6420238
CHOI, Young Cheol; CHOI, Seongcheol. Alkali–silica reactivity of cementitious materials using ferro-nickel slag fine aggregates produced in different cooling conditions. Construction and Building Materials, v. 99, p. 279-287, 2015. DOI: https://doi.org/10.1016/j.conbuildmat.2015.09.039
FERENHOF, Helio Aisenberg; FERNANDES, Roberto Fabiano. Demystifying the literature review as basis for scientific writing: SSF method. Revista ACB, v. 21, n. 3, p. 550-563, 2016.
GAVRILETEA, Marius Dan. Environmental impacts of sand exploitation. Analysis of sand market. Sustainability, v. 9, n. 7, p. 1118, 2017. DOI: https://doi.org/10.3390/su9071118
GU, Lei; OZBAKKALOGLU, Togay. Use of recycled plastics in concrete: A critical review. Waste Management, v. 51, p. 19-42, 2016. DOI: https://doi.org/10.1016/j.wasman.2016.03.005
GU, Yu-cun et al. Immobilization of hazardous ferronickel slag treated using ternary limestone calcined clay cement. Construction and Building Materials, v. 250, p. 118837, 2020. DOI: https://doi.org/10.1016/j.conbuildmat.2020.118837
HABERT, Guillaume et al. Environmental impacts and decarbonization strategies in the cement and concrete industries. Nature Reviews Earth & Environment, v. 1, n. 11, p. 559-573, 2020. DOI: https://doi.org/10.1038/s43017-020-0093-3
HAN, Fanghui et al. Hydration heat and kinetics of composite binder containing blast furnace ferronickel slag at different temperatures. Thermochimica Acta, v. 702, p. 178985, 2021. DOI: https://doi.org/10.1016/j.tca.2021.178985
HUANG, Yiduo; WANG, Qiang; SHI, Mengxiao. Characteristics and reactivity of ferronickel slag powder. Construction and Building Materials, v. 156, p. 773-789, 2017. DOI: https://doi.org/10.1016/j.conbuildmat.2017.09.038
KATSIOTIS, N. S. et al. Utilization of ferronickel slag as additive in Portland cement: a hydration leaching study. Waste and Biomass Valorization, v. 6, p. 177-189, 2015. DOI: https://doi.org/10.1007/s12649-015-9346-7
KIM, Hansol; LEE, Chang Hong; ANN, Ki Yong. Feasibility of ferronickel slag powder for cementitious binder in concrete mix. Construction and Building Materials, v. 207, p. 693-705, 2019. DOI: https://doi.org/10.1016/j.conbuildmat.2019.02.166
KOMNITSAS, Kostas; ZAHARAKI, Dimitra; BARTZAS, Georgios. Effect of sulphate and nitrate anions on heavy metal immobilisation in ferronickel slag geopolymers. Applied clay science, v. 73, p. 103-109, 2013. DOI: https://doi.org/10.1016/j.clay.2012.09.018
LEE, Chang-Hong et al. Experimental study on thermal conductivity of concrete using ferronickel slag powder. KSCE Journal of Civil Engineering, v. 24, n. 1, p. 219-227, 2019. DOI: https://doi.org/10.1007/s12205-020-0588-y
LEMONIS, N. et al. Hydration study of ternary blended cements containing ferronickel slag and natural pozzolan. Construction and Building Materials, v. 81, p. 130-139, 2015. DOI: https://doi.org/10.1016/j.conbuildmat.2015.02.046
LI, Baoliang et al. Sulfate resistance of steam cured ferronickel slag blended cement mortar. Cement and Concrete Composites, v. 96, p. 204-211, 2019. DOI: https://doi.org/10.1016/j.cemconcomp.2018.12.001
LI, Yubo et al. Mechanical performance, hydration characteristics and microstructures of high volume blast furnace ferronickel slag cement mortar by wet grinding activation. Construction and Building Materials, v. 320, p. 126148, 2022. DOI: https://doi.org/10.1016/j.conbuildmat.2021.126148
LIU, Kuisheng; ZHANG, Zengqi; SUN, Jianwei. Advances in Understanding the Alkali‐Activated Metallurgical Slag. Advances in Civil Engineering, v. 2021, n. 1, p. 8795588, 2021. DOI: https://doi.org/10.1155/2021/8795588
LIU, Qiong et al. Experimental behaviors of prefabricated members made of ferronickel slag concrete. Construction and Building Materials, v. 261, p. 120519, 2020. DOI: https://doi.org/10.1016/j.conbuildmat.2020.120519
LIU, Xiaoming et al. Study on the durability of concrete with FNS fine aggregate. Journal of hazardous materials, v. 381, p. 120936, 2020. DOI: https://doi.org/10.1016/j.jhazmat.2019.120936
MAILVAGANAM, N. P. Chemical Admixtures for Concrete. CRC Press. 2019.
MAŁEK, Marcin et al. An experimental study of possible post-war ferronickel slag waste disposal in szklary (Lower silesian, poland) as partial aggregate substitute in concrete: Characterization of physical, mechanical, and thermal properties. Materials, v. 14, n. 10, p. 2552, 2021. DOI: https://doi.org/10.3390/ma14102552
MERLI, Roberto et al. Recycled fibers in reinforced concrete: A systematic literature review. Journal of Cleaner Production, v. 248, p. 119207, 2020. DOI: https://doi.org/10.1016/j.jclepro.2019.119207
NGUYEN, Quang Dieu et al. Performance of fly ash concrete with ferronickel slag fine aggregate against alkali-silica reaction and chloride diffusion. Cement and Concrete Research, v. 139, p. 106265, 2021. DOI: https://doi.org/10.1016/j.cemconres.2020.106265
NGUYEN, Quang Dieu et al. Durability and microstructure properties of low-carbon concrete incorporating ferronickel slag sand and fly ash. Journal of Materials in Civil Engineering, v. 31, n. 8, p. 04019152, 2019. DOI: https://doi.org/10.1061/(ASCE)MT.1943-5533.0002797
NURUZZAMAN, M. D.; CASIMIRO, Jhanssen Orlando Camargo; SARKER, Prabir Kumar. Fresh and hardened properties of high strength self-compacting concrete using by-product ferronickel slag fine aggregate. Journal of Building Engineering, v. 32, p. 101686, 2020. DOI: https://doi.org/10.1016/j.jobe.2020.101686
NURUZZAMAN, Md; KURI, Jhutan Chandra; SARKER, Prabir Kumar. Strength, permeability and microstructure of self-compacting concrete with the dual use of ferronickel slag as fine aggregate and supplementary binder. Construction and Building Materials, v. 318, p. 125927, 2022. DOI: https://doi.org/10.1016/j.conbuildmat.2021.125927
DE PAIVA, Fábio Friol Guedes et al. Utilization of inorganic solid wastes in cementitious materials–A systematic literature review. Construction and Building Materials, v. 285, p. 122833, 2021. DOI: https://doi.org/10.1016/j.conbuildmat.2021.122833
PALMATIER, Robert W.; HOUSTON, Mark B.; HULLAND, John. Review articles: Purpose, process, and structure. Journal of the Academy of Marketing Science, v. 46, p. 1-5, 2018. DOI: https://doi.org/10.1007/s11747-017-0563-4
PETROUNIAS, Petros et al. Utilization of industrial ferronickel slags as recycled concrete aggregates. Applied Sciences, v. 12, n. 4, p. 2231, 2022. DOI: https://doi.org/10.3390/app12042231
QI, Ai et al. Mechanical properties of the concrete containing ferronickel slag and blast furnace slag powder. Construction and Building Materials, v. 231, p. 117120, 2020. DOI: https://doi.org/10.1016/j.conbuildmat.2019.117120
RAHMAN, Muhammad Ashiqur et al. Soundness and compressive strength of Portland cement blended with ground granulated ferronickel slag. Construction and Building Materials, v. 140, p. 194-202, 2017. DOI: https://doi.org/10.1016/j.conbuildmat.2017.02.023
SAHA, Ashish Kumer; SARKER, Prabir Kumar. Expansion due to alkali-silica reaction of ferronickel slag fine aggregate in OPC and blended cement mortars. Construction and Building Materials, v. 123, p. 135-142, 2016. DOI: https://doi.org/10.1016/j.conbuildmat.2016.06.144
SAHA, Ashish Kumer; SARKER, Prabir Kumar. Sustainable use of ferronickel slag fine aggregate and fly ash in structural concrete: Mechanical properties and leaching study. Journal of cleaner production, v. 162, p. 438-448, 2017a. DOI: https://doi.org/10.1016/j.jclepro.2017.06.035
SAHA, Ashish Kumer; SARKER, Prabir Kumar. Compressive strength of mortar containing ferronickel slag as replacement of natural sand. Procedia engineering, v. 171, p. 689-694, 2017b. DOI: https://doi.org/10.1016/j.proeng.2017.01.410
SAHA, Ashish Kumer; SARKER, Prabir Kumar. Durability of mortar incorporating ferronickel slag aggregate and supplementary cementitious materials subjected to wet–dry cycles. International Journal of Concrete Structures and Materials, v. 12, p. 1-12, 2018a. DOI: https://doi.org/10.1186/s40069-018-0264-5
SAHA, Ashish Kumer; SARKER, Prabir Kumar. Durability characteristics of concrete using ferronickel slag fine aggregate and fly ash. Magazine of Concrete Research, v. 70, n. 17, p. 865-874, 2018b. DOI: https://doi.org/10.1680/jmacr.17.00260
SAHA, Ashish Kumer; SARKER, Prabir Kumar. Effect of sulphate exposure on mortar consisting of ferronickel slag aggregate and supplementary cementitious materials. Journal of Building Engineering, v. 28, p. 101012, 2020. DOI: https://doi.org/10.1016/j.jobe.2019.101012
SAHA, Ashish Kumer; KHAN, M. N. N.; SARKER, Prabir Kumar. Value added utilization of by-product electric furnace ferronickel slag as construction materials: A review. Resources, Conservation and Recycling, v. 134, p. 10-24, 2018. DOI: https://doi.org/10.1016/j.resconrec.2018.02.034
SAHA, Ashish Kumer; SARKER, Prabir Kumar; GOLOVANEVSKIY, Vladimir. Thermal properties and residual strength after high temperature exposure of cement mortar using ferronickel slag aggregate. Construction and Building Materials, v. 199, p. 601-612, 2019. DOI: https://doi.org/10.1016/j.conbuildmat.2018.12.068
SAKOI, Yuki et al. Properties of concrete used in ferronickel slag aggregate. In: Proceedings of the 3rd international conference on sustainable construction materials and technologies, Tokyo, Japan. 2013. p. 1-6.
SHORT, Jeremy. The art of writing a review article. Journal of Management, v. 35, n. 6, p. 1312-1317, 2009. DOI: https://doi.org/10.1177/0149206309337489
SHOYA, M. et al. Properties of self-compacting concrete with slag fine aggregates. In: Exploiting wastes in concrete. Thomas Telford Publishing, 1999. p. 121-130.
SILVESTRO, Laura; GLEIZE, Philippe Jean Paul. Effect of carbon nanotubes on compressive, flexural and tensile strengths of Portland cement-based materials: A systematic literature review. Construction and Building Materials, v. 264, p. 120237, 2020. DOI: https://doi.org/10.1016/j.conbuildmat.2020.120237
SUN, Jianwei; FENG, Jingjing; CHEN, Zhonghui. Effect of ferronickel slag as fine aggregate on properties of concrete. Construction and Building Materials, v. 206, p. 201-209, 2019. DOI: https://doi.org/10.1016/j.conbuildmat.2019.01.187
WANG, Qiang; HUANG, Zongxian; WANG, Dengquan. Influence of high-volume electric furnace nickel slag and phosphorous slag on the properties of massive concrete. Journal of Thermal Analysis and Calorimetry, v. 131, p. 873-885, 2017. DOI: https://doi.org/10.1007/s10973-017-6576-x
WINDLE, Pamela E. The systematic review process: an overview. Journal of PeriAnesthesia Nursing, v. 25, n. 1, p. 40-42, 2010. DOI: https://doi.org/10.1016/j.jopan.2009.12.001
YANG, Hee Jun et al. Performance evaluation of cement paste incorporating ferro-nickel slag powder under elevated temperatures. Case Studies in Construction Materials, v. 15, p. e00727, 2021. DOI: https://doi.org/10.1016/j.cscm.2021.e00727
ZHAI, Munan et al. Enhancing the recyclability of air-cooled high-magnesium ferronickel slag in cement-based materials: A study of assessing soundness through modifying method. Construction and Building Materials, v. 261, p. 120523, 2020. DOI: https://doi.org/10.1016/j.conbuildmat.2020.120523
ZHOU, Yuqi; SHI, Chunfang. Experimental study of electric furnace ferronickel slag as a supplementary cementitious material in massive high-strength concrete. Journal of Thermal Analysis and Calorimetry, v. 147, n. 8, p. 4983-4993, 2021. DOI: https://doi.org/10.1007/s10973-021-10900-5
Downloads
Arquivos adicionais
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2025 Walter Jacobelis Neto, Rafael Vancini Schimith Berghe, Cezar Augusto Casagrande, Ronaldo Pilar, Rudiele Aparecida Schankoski

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Permite o compartilhamento, adaptação e uso para quaisquer fins, inclusive comerciais, desde que feita a devida atribuição aos autores e à Revista Sítio Novo.
Os autores declaram que o trabalho é original, não foi previamente publicado em parte ou no todo, exceto em servidores de preprints reconhecidos, desde que declarado, e que nenhum outro manuscrito similar de sua autoria está publicado ou em processo de avaliação por outro periódico, seja impresso ou eletrônico.
Declaram que não violaram nem infringiram nenhum tipo de direito de propriedade de outras pessoas, e que todas as citações no texto são fatos verdadeiros ou baseados em pesquisas de exatidão cientificamente considerável.
Os autores mantêm os direitos autorais dos manuscritos publicados nesta revista, permitindo o uso irrestrito de seu conteúdo, desde que citada a autoria original e a fonte da publicação.