Remote sensing applied to classification of local climate zones

Autores/as

DOI:

https://doi.org/10.47236/2594-7036.2022.v7.i0.126-138p

Palabras clave:

Brazil. Climate mapping. GIS. Thermal comfort.

Resumen

Monitoring of representative intra-urban thermal features is a difficult task due to the complexity of urban terrain (OKE, 2004). The characteristics of urbanized areas can be quantified using different methods, including the classification system of Local Climate Zones (LCZs), which describes the local-scale physical conditions of a given area. It is applied with universal and relatively easy standardization based on geometric, thermal, and radiative surface properties. This study aims to characterize the urban and rural areas of the municipality of Campo Grande (Midwest region, Brazil) using an adaptation of the LCZ method. Results from the modeling detected the following six built types: 2 - compact midrise, 3 - compact low-rise, 4 - open high-rise, 6 - open low-rise, 8 - large low-rise, 9 - sparsely built. This method can be used in any urban area if the required input data is available.

Descargas

Los datos de descargas todavía no están disponibles.

Métricas

Cargando métricas ...

Biografía del autor/a

Camila Amaro de Souza, Universidade Federal de Mato Grosso do Sul - UFMS

PhD, architect and urbanist, Federal University of Mato Grosso do Sul - UFMS

Eliane Guaraldo, Universidade Federal de Mato Grosso do Sul - UFMS

PhD, architect and urbanist, Federal University of Mato Grosso do Sul

Antonio Conceição Paranhos Filho, Universidade Federal de Mato Grosso do Sul - UFMS

PhD, geologist, Federal University of Mato Grosso do Sul

Citas

BECHTEL, B.; ALEXANDER, P. J.; BOHNER, J.; CHING, J.; CONRAD, O.; FEDDEMA, J.; G. MILLS, G.; SEE, L.; STEWART, I. D. Mapping Local Climate Zones for a Worldwide Database of the Form and Function of Cities. Isprs International Journal of Geo-Information. V. 4, n. 1, p. 199-219, 2015.

BECHTEL, B.; SEE, L.; GERALD, M.; FOLEY, M. Classification of Local Climate Zones Using SAR and Multispectral Data in an Arid Environment. Ieee Journal of Selected Topics in Applied Earth Observations and Remote Sensing. v. 9, n.7, p.3097-3105, 2016.

CARDOSO, R.; AMORIM, M. (2017). Estimativa da distribuição espacial da temperatura do ar com base em zonas climáticas locais (LCZ) e modelos de regressão. Revista de Geografia e Ordenamento do Território (GOT), n. 12 (dezembro). Centro de Estudos de Geografia e Ordenamento do Território, p. 75-99, dx.doi.org/10.17127/got/2017.12.004

DAVENPORT, A. G.; GRIMMOND, C. S. B.; OKE, T. R.; WIERINGA, J. Estimating the roughness of cities and sheltered country. 12ª Conferência em Climatologia Aplicada, Asheville, American Meteorological Society. V. 4B, n.2, p. 96–99, 2000.

EARTH EXPLORER. 2015. Imagens Landsat 8. Disponível em: http:// earthexplorer.usgs.gov/. Acesso em: 10 de junho de 2018.

EMMANUEL, R.; LOCONSOLE, A. Green infrastructure as an adaptation approach to tackling urban overheating in the Glasgow Clyde Valley Region, UK. Landscape and Urban Planning. V. 138, p. 71-86, 2015. DOI: 10.1016/j.landurbplan.2015.02.012.

GELETIC, J.; LEHNERT, M. GIS-based delineation of local climate zones: The case of medium-sized Central European cities. Moravian Geographical Reports. V. 24, n.3, p. 2-12, 2016.

GRIMMOND, C. S. B.; OKE, T. R. Heat Storage in Urban Areas: Local-Scale Observations and Evaluation of a Simple Model. Journal of Applied Meteorology. V. 38, n. 7, p. 922-940, 1999.

HEBBERT and JANKOVIC. Cities and Climate Change: The Precedents and Why They Matter. Urban Studies Journal, v. 50 (7) p. 1332–1347, 2013. doi: 10.1177/0042098013480970.

MASSON, V. Adapting cities to climate change: A systemic modeling approach. Urban Climate, Paris, v. 10, p. 407-429, 2014.

MATZARAKIS, A.; RUTZ, F.; and MAYER, H., 2007: Modelling radiation fluxes in simple and complex environments - application of the RayMan model. International Journal of Biometeorology, 51(4), 323–334. doi: 10.1007/s00484-006-0061-8.

MATZARAKIS, A.; RUTZ, F.; and MAYER, H., 2010: Modelling radiation fluxes in simple and complex environments: basics of the RayMan model. International Journal of Biometeorology, 54(2), 131–139. doi: 10.1007/s00484-009-0261-0.

MIDDLE, A.; HÄB, K.; BRAZEL, A. J.; MARTIN, C. A.; GUHATHAKURTA, S. Impact of urban design on mid-afternoon microclimate in Phoenix Local Climate Zones. Landscape and Urban Planning. 122 (2014) p. 16-28.

OKE, T. R. Boundary Layer Climates. London: Methuen & Co. 2nd ed. 1987, 435p.

QGIS DEVELOPMENT TEAM. QGIS Geographic Information System, 2018.

REIS, A. L. Influência da rugosidade do terreno para o perfil vertical do vento. 2016. 77f. Monografia (Programa de Graduação em Ciências Atmosféricas). Universidade Federal Itajubá - UNIFEI, Itajubá.

REVISÃO DO PLANO DIRETOR MUNICIPAL DE CAMPO GRANDE-MS, URBTEC, 2016. Disponível em: <http://www.campogrande.ms.gov.br/planurb/wp-content/uploads/sites/18/2017/05/Relatório-P2-CG-analise-da-situação-atual.pdf>. Acesso em 28 jun. 2018.

STEWART, I. D. Redefining the urban heat island. 2011-a. 368f. Tese (Doutorado em Filosofia). The Faculty of Graduate Studies, The University of British Columbia, Vancouver.

STEWART, I. D.; OKE, T. R. Local Climate Zones for Urban Temperature Studies. Bull. American Meteorological Society, v. 93, p. 1879–1900, 2012. doi: 10.1175/BAMS-D-11-00019.1

Descargas

Publicado

2022-03-28

Cómo citar

SOUZA, Camila Amaro de; GUARALDO, Eliane; PARANHOS FILHO, Antonio Conceição. Remote sensing applied to classification of local climate zones. Revista Sítio Novo, Palmas, v. 7, p. 126–138, 2022. DOI: 10.47236/2594-7036.2022.v7.i0.126-138p. Disponível em: https://sitionovo.ifto.edu.br/index.php/sitionovo/article/view/1198. Acesso em: 5 dic. 2025.

Número

Sección

Artigo Científico