Avaliação Adaptativa de habilidades de lógica de programação
DOI:
https://doi.org/10.47236/2594-7036.2026.v10.1905Palavras-chave:
Avaliação Adaptativa, Educação, Estimativa de máxima verossimilhança, Lógica de programação, Teoria de resposta ao itemResumo
A Avaliação Adaptativa (AA) aprimora os resultados de aprendizagem ajustando as avaliações à proficiência dos estudantes. Este artigo apresenta métodos adaptativos para a avaliação de habilidades da lógica de programação na educação, implementados em um sistema de código aberto denominado MCTest. Neste sistema, os professores criam AA personalizadas para seus estudantes. Três métodos adaptativos foram desenvolvidos: Testagem Semi-Adaptativa (SAT), Probabilidade Ponderada de Correção (WPC) e Estimativa de Máxima Verossimilhança (MLE). Seis testes foram concebidos, incluindo uma linha de base não adaptativa, com questões de múltipla escolha classificadas de acordo com a Taxonomia de Bloom. Esses testes validaram as calibrações de itens usando a Teoria de Resposta ao Item. O método foi aplicado em duas turmas com 72 estudantes, e um questionário final com 17 respondentes confirmou estatisticamente sua eficácia percebida.Downloads
Métricas
Referências
ALVES, Laura Filállepe et al. Continuous assessment, a teaching methodology for reducing retention and dropout rates in higher education calculus courses. Revista Sítio Novo, Palmas, v. 6, n. 4, p. 51-60, 2022. DOI: 10.47236/2594-7036.2022.v6.i4.51-60p. DOI: https://doi.org/10.47236/2594-7036.2022.v6.i4.51-60p
ALVES, Lynn et al. Remote education: between illusion and reality. Interfaces Científicas-Educação, v. 8, n. 3, p. 348-365, 2020. DOI: https://doi.org/10.17564/2316-3828.2020v8n3p348-365
ALVES, Welington Domingos; SANTOS, Luiz Gustavo Fernandes dos. Playing with mathematics: using games to mediate the teaching and learning of mathematical content. Revista Sítio Novo, Palmas, v. 6, n. 4, p. 84-93, 2022. DOI: 10.47236/2594-7036.2022.v6.i4.84-93p. DOI: https://doi.org/10.47236/2594-7036.2022.v6.i4.84-93p
BAKER, Frank B. et al. The basics of item response theory using R. v. 969. Springer, 2017. DOI: https://doi.org/10.1007/978-3-319-54205-8
BAYLARI, Ahmad; MONTAZER, Gh A. Design a personalized e-learning system based on item response theory and artificial neural network approach. Expert Systems with Applications, v. 36, n. 4, p. 8013-8021, 2009. DOI: https://doi.org/10.1016/j.eswa.2008.10.080
BECKER, Samantha Adams et al. NMC horizon report: 2018 higher education edition. Louisville, CO: Educause, 2018.
BINH, Hoang Tieu; DUY, Bui The. Student ability estimation based on IRT. In: National Foundation For Science And Technology Development Conference On Information And Computer Science (NICS), 3., 2016. [S. l.], 2016. p. 56-61. DOI: https://doi.org/10.1109/NICS.2016.7725667
CAI, Li et al. Item response theory. Annual Review of Statistics and Its Application, v. 3, p. 297-321, 2016. DOI: https://doi.org/10.1146/annurev-statistics-041715-033702
CHEN, Keyu. A comparison of fixed item parameter calibration methods and reporting score scales in the development of an item pool. 2019. Tese (PhD) - University of lowa, [S. l.], 2019.
CHOI, Younyoung; MCCLENEN, Cayce. Development of adaptive formative assessment system using computerized adaptive testing and dynamic bayesian networks. Applied Sciences, v. 10, n. 22, p. 8196, 2020. DOI: https://doi.org/10.3390/app10228196
COHEN, Jacob. Statistical power analysis for the behavioral sciences. 2. ed. Hillsdale, NJ: Erlbaum, 1988.
COSTA, Rebeca Soler et al. Personalized and adaptive learning: educational practice and technological impact. Texto Livre, v. 14, p. e33445, 2022. DOI: https://doi.org/10.35699/1983-3652.2021.33445
GALVAO, Ailton Fonseca et al. An intelligent model for item selection in computerized adaptive testing. 2013. Dissertation (Master's) - Federal University of Juiz de Fora 2013. (UFJF), Juiz de Fora, MG, 2013.
GHAVIFEKR, Simin; ROSDY, Wan Athirah Wan. Teaching and learning with technology: Effectiveness of ICT integration in schools. International journal of research in education and science, v. 1, n. 2, p. 175-191, 2015. DOI: https://doi.org/10.21890/ijres.23596
GROS, Begoña. The design of smart educational environments. Smart learning environments, v. 3, p. 1-11, 2016. DOI: https://doi.org/10.1186/s40561-016-0039-x
HAMDARE, S. An adaptive evaluation system to test student caliber using item response theory. International Journal of Modern Trends in Engineering and Research, v. 1, n. 5, p. 329-333, 2014.
HAMMOND, Flora et al. Handbook for clinical research: design, statistics, and implementation. Demos Medical Publishing, 2014.
HOLM, Sture. A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics, v. 6, n. 2, p. 65-70, 1979.
JOHNSON, Amy M. et al. Challenges and solutions when using technologies in the classroom. In: Adaptive educational technologies for literacy instruction. Routledge, 2016. p. 13-30. DOI: https://doi.org/10.4324/9781315647500-2
KARINO, Camila Akemi; SOUSA, Eduardo Carvalho. Understanding your ENEM score - Participant's Guide. [S. l.: s. n.], 2012.
KRATHWOHL, David R. A Revision of Bloom's Taxonomy: An Overview. Theory Into Practice, v. 41, n. 4, p. 212-218, 2002. DOI: https://doi.org/10.1207/s15430421tip4104_2
LAZARINIS, Fotis et al. Creating personalized assessments based on learner knowledge and objectives in a hypermedia Web testing application. Computers & Education, v. 55, n. 4, p. 1732-1743, 2010. DOI: https://doi.org/10.1016/j.compedu.2010.07.019
LORD, Frederic M. Applications of item response theory to practical testing problems. Routledge, 1980.
MEIJER, Rob R.; NERING, Michael L. Computerized adaptive testing: Overview and introduction. Applied psychological measurement, 1999. DOI: https://doi.org/10.1177/01466219922031310
MIN, Shangchao; ARYADOUST, Vahid. A systematic review of item response theory in language assessment: Implications for the dimensionality of language ability. Studies in Educational Evaluation, v. 68, p. 100963, 2021. DOI: https://doi.org/10.1016/j.stueduc.2020.100963
MORAN, José. Hybrid education: a key concept for education today. In: Hybrid teaching: personalization and technology in education. Porto Alegre: Penso, 2015.
MOREIRA, José António; SCHLEMMER, Eliane.
Towards a new concept and paradigm for onlife digital education. Revista uFG, v. 20, 2020.
NEVES, Rogério; ZAMPIROLLI, Francisco de Assis. Processing information: a practical book on language-independent programming. São Bernardo do Campo: EdUFABC, 2017.
OLIVEIRA, Plínio Cardoso de; SOUZA, Wallysonn Alves de; ALVES, José Robson Mariano. Contesting: software to stimulate critical thinking, engagement, and promote autonomy in professional and technological education. Revista Sítio Novo, Palmas, v. 9, p. e1611, 2025. DOI: https://doi.org/10.47236/2594-7036.2025.v9.1611
PARAMYTHIS, Alexandros; LOIDL-REISINGER, Susanne. Adaptive learning environments and e-learning standards. In: European Conference On E-learning, 2., 2003. [S. l.], 2003. p. 369-379.
PELLEGRINO, James W.; QUELLMALZ, Edys S. Perspectives on the integration of technology and assessment. Journal of Research on Technology in Education, v. 43, n. 2, p. 119-134, 2010. DOI: https://doi.org/10.1080/15391523.2010.10782565
PONTES, Paulo Ricardo da Silva; VICTOR, Valci Ferreira. Educational robotics: a practical approach to teaching programming logic. Revista Sítio Novo, Palmas, v. 6, n. 1, p. 57-71, 2022. DOI: 10.47236/2594-7036.2022.v6.i1.57-71p. DOI: https://doi.org/10.47236/2594-7036.2022.v6.i1.57-71p
PUGLIESE, Lou. Adaptive learning systems: Surviving the storm. Educause review, v. 10, n. 7, 2016.
ROSENTHAL, Robert. Meta-analytic procedures for social research. Beverly Hills: Sage, 1984.
SHAPIRO, Samuel S.; WILK, Martin B. An analysis of variance test for normality (complete samples). Biometrika, v. 52, n. 3-4, p. 591-611, 1965. DOI: https://doi.org/10.1093/biomet/52.3-4.591
SOARES, Ronald Ruan Pereira et al. Development of a virtual assistant as academic support for the bachelor's degree program in Computer Science using customized generative AI and RAG. Revista Sítio Novo, Palmas, v. 9, p. e1757, 2025. DOI: https://doi.org/10.47236/2594-7036.2025.v9.1757
TUKEY, John W. Box-and-whisker plots. In: Exploratory data analysis. [S. l.: s. n.], 1977. p. 39-43.
WAINER, Howard et al. Computerized adaptive testing: A primer. Lawrence Erlbaum Associates, Inc, 1990.
WANG, Feng-Hsu. Application of componential IRT model for diagnostic test in a standard-conformant eLearning system. In: IEEE International Conference On Advanced Learning Technologies (ICALT'06), 6., 2006. [S. l.], 2006. p. 237-241. DOI: https://doi.org/10.1109/ICALT.2006.1652414
WATERS, John K. The great adaptive learning experiment. Campus Technology, v. 16, 2014.
WILCOXON, Frank. Individual comparisons by ranking methods. Biometrics Bulletin, v. 1, n. 6, p. 80-83, 1945. DOI: https://doi.org/10.2307/3001968
YANG, Albert C. M. et al. Adaptive formative assessment system based on computerized adaptive testing and the learning memory cycle for personalized learning. Computers and Education: Artificial Intelligence, v. 3, p. 100104, 2022. DOI: https://doi.org/10.1016/j.caeai.2022.100104
ZAMPIROLLI, Francisco de Assis. MCTest: How to create and correct automatically parameterized exams. Brazil: Independently Published, 2023.
ZAMPIROLLI, Francisco de Assis et al. An experience of automated assessment in a large-scale introduction programming course. Computer Applications in Engineering Education, p. 1284-1299, 2021. DOI: https://doi.org/10.1002/cae.22385
ZAMPIROLLI, Francisco de Assis et al. Evaluation process for an introductory programming course using blended learning in engineering education. Computer Applications in Engineering Education, 2018. p. 1-13.
ZHENG, Yi. New methods of online calibration for item bank replenishment. 2014. Tese (PhD) - University of Illinois at Urbana-Champaign, [S. l.], 2014.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2026 Lucas Montagnani Calil Elias, Francisco de Assis Zampirolli

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Permite o compartilhamento, adaptação e uso para quaisquer fins, inclusive comerciais, desde que feita a devida atribuição aos autores e à Revista Sítio Novo.
Os autores declaram que o trabalho é original, não foi previamente publicado em parte ou no todo, exceto em servidores de preprints reconhecidos, desde que declarado, e que nenhum outro manuscrito similar de sua autoria está publicado ou em processo de avaliação por outro periódico, seja impresso ou eletrônico.
Declaram que não violaram nem infringiram nenhum tipo de direito de propriedade de outras pessoas, e que todas as citações no texto são fatos verdadeiros ou baseados em pesquisas de exatidão cientificamente considerável.
Os autores mantêm os direitos autorais dos manuscritos publicados nesta revista, permitindo o uso irrestrito de seu conteúdo, desde que citada a autoria original e a fonte da publicação.















