Applications of 3D printing in the manufacturing of molds for injection molding of thermoplastics: a literature review

Authors

DOI:

https://doi.org/10.47236/2594-7036.2025.v9.1802

Keywords:

FDM, Injection molding, Plastic injection, Polymers, Rapid prototyping

Abstract

Additive manufacturing, especially 3D printing, has emerged as an innovative solution for producing injection molds for thermoplastics, enabling time and cost reduction and greater design flexibility. This study presents a Systematic Literature Review (SLR) aiming to analyze the contributions, limitations, and trends of this technology in the industrial context. The methodology followed the PRISMA 2020 protocol, ensuring rigor in the selection and analysis of data. The search was conducted in the ResearchGate, Portal de Periódicos CAPES, IBICT, SciELO Brasil, UFSC Institutional Repository, and ScienceDirect databases, using keywords such as "3D printing", "rapid tooling", and "injection molding". Initially, 100 studies were identified; after abstract screening, 35 were pre-selected and, following inclusion criteria that considered works published between 2015 and 2025 in English or Portuguese focused on the manufacturing of molds or cavities by 3D printing for thermoplastic injection, 10 studies were selected for final analysis, excluding works outside the scope, incomplete, or duplicated. The results show that 3D printing enables rapid prototyping, hybrid mold fabrication, integration of conformal cooling channels, and the use of recycled materials, bringing gains in efficiency, sustainability, and production flexibility. Despite advances, gaps remain in durability, thermal resistance, methodological standardization, and economic evaluation, indicating the need for further studies to consolidate the application of additive manufacturing in tooling on an industrial scale.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Ana Clara Souto de Souza, Federal University of Juiz de Fora

Undergraduate student in Design at the Federal University of Juiz de Fora. CNPq scholarship recipient. Juiz de Fora, Minas Gerais, Brazil. Address eletrônico:anaclara.souto@estudante.ufjf.br. Orcid: https://orcid.org/0009-0008-2487-418X. Lattes Curriculum: http://lattes.cnpq.br/4887084667547343.

Lia Paletta Benatti, Federal University of Juiz de Fora

PhD in Design from the State University of Minas Gerais. Professor at the Federal University of Juiz de Fora. Juiz de Fora, Minas Gerais, Brazil. Email address: lia.paletta@ufjf.br. Orcid: https://orcid.org/0000-0003-1628-9585. Lattes Curriculum: http://lattes.cnpq.br/2222051807397224.

Artur Caron Mottin, Federal Center for Technological Education of Minas Gerais

PhD in Materials Engineering from the Federal University of Ouro Preto. Professor at the Federal Center for Technological Education of Minas Gerais. Belo Horizonte, Minas Gerais, Brazil. Email address: artur.mottin@cefetmg.br. Orcid: https://orcid.org/0000-0001-6793-9926. Lattes Curriculum: http://lattes.cnpq.br/2859497118825113.

Eduardo Cassiano Santos David, Federal Center for Technological Education of Minas Gerais

Master's student in Mechanical Engineering at the Federal Center for Technological Education of Minas Gerais. Belo Horizonte, Minas Gerais, Brazil. Email address: eduardocsdavid@gmail.com. Orcid: https://orcid.org/0009-0005-3647-6633. Lattes Curriculum: http://lattes.cnpq.br/4395416719004346.

References

CHVAL; RAZ, K.; AMARO, P. Integrating 3D Printing with Injection Molding for Improved Manufacturing Efficiency. Polymers, v. 17, n. 14, p. 1935–1935, 14 jul. 2025. DOI: https://doi.org/10.3390/polym17141935

DIZON, J. R. C. et al. 3D printed injection molds using various 3D printing technologies. Materials Science Forum, v. 1005, p. 150–156, 2020. Disponível em: https://doi.org/10.4028/www.scientific.net/msf.1005.150. Acesso em: 20 mar. 2025. DOI: https://doi.org/10.4028/www.scientific.net/MSF.1005.150

EYERCIOGLU, O. et al. EXPENDABLE MOLD MANUFACTURING FOR INJECTION MOLDING -A CASE STUDY OF A HYBRID ADDITIVE MANUFACTURING. The 5 th International Conference of Materials and Engineering Technology, 25 set. 2024.

FARIOLI, D. et al. Rapid tooling for injection molding inserts. ESAFORM 2021, 1 abr. 2021. DOI: https://doi.org/10.25518/esaform21.4186

FERIOTTI, M. A. et al. APLICAÇÕES DA MANUFATURA ADITIVA E IMPRESSÃO 3D NA FABRICAÇÃO DE MOLDES PARA INJEÇÃO DE TERMOPLÁSTICOS. Brazilian Journal of Production Engineering - BJPE, p. 199–218, 22 set. 2021. DOI: https://doi.org/10.47456/bjpe.v7i3.34567

FERNANDES, A. D. F. et al. Supply chain and the impact of 3D printing. São Paulo, SP, 2014.

FOGGIATTO, J. A. et al. ABS molds built by the fused deposition modeling process for injection of PP and LDPE. Polímeros, v. 14, n. 5, p. 349–353, 2004. Disponível em: https://doi.org/10.1590/S0104-14282004000500013. Acesso em: 20 mar. 2025. DOI: https://doi.org/10.1590/S0104-14282004000500013

GOMES, M. J. R. Esquema ilustrativo de molde para injeção de polímeros. 2025. Ilustração não publicada.

GÜLÇÜR et al. Rapid tooling: Comparative analysis of mechanical properties and energy efficiency in micro-injection mouldings using polymer and metal moulds. Manufacturing Letters, 1 jun. 2025. DOI: https://doi.org/10.1016/j.mfglet.2025.06.204

JANDYAL, A. et al. 3D printing – A review of processes, materials, and applications in Industry 4.0. Sustainable Operations and Computers, v. 3, p. 33–42, 2022. Disponível em: https://doi.org/10.1016/j.susoc.2021.09.004. Acesso em: 20 mar. 2025. DOI: https://doi.org/10.1016/j.susoc.2021.09.004

KRIESI, C.; BJELLAND, Ø.; STEINERT, M. Fast and iterative prototyping for injection molding – a case study of rapidly prototyping. Procedia Manufacturing, v. 21, p. 205–212, 2017. DOI: https://doi.org/10.1016/j.promfg.2018.02.112

KRIZSMA, S.; SUPLICZ, A.; GERE, D. Customised production of injection moulded parts from recycled materials using rapid tooling approach and coupled injection moulding-thermal and mechanical simulation. Results in Engineering, v. 26, p. 105272, 15 maio 2025. DOI: https://doi.org/10.1016/j.rineng.2025.105272

LAGARTO, D. C. S. Study on the feasibility of implementing a cooling system with conformal channels in a plastic injection mold. 2022. Dissertação (Mestrado) — FEUP. Disponível em: https://hdl.handle.net/10216/145139. Acesso em: 20 mar. 2025.

LOPES, M. et al. The importance of simulations in additive manufacturing of mechanical molds. Revista Mundi Engenharia, Tecnologia e Gestão, v. 7, n. 1, p. 396-01–396-24, 2022. Disponível em: https://doi.org/10.21575/25254782rmetg2022vol7n11782. Acesso em: 20 mar. 2025. DOI: https://doi.org/10.21575/25254782rmetg2022vol7n11782

MAGALHÃES, L. C. dos S.; MUNIZ, F. R.; AZEVEDO, A. A. de. Analysis of the causes affecting the availability of plastic injection molds: A case study. Brazilian Journal of Production Engineering, v. 8, n. 6, p. 44–57, 2022. Disponível em: https://doi.org/10.47456/bjpe.v8i6.38876. Acesso em: 20 mar. 2025. DOI: https://doi.org/10.47456/bjpe.v8i6.38876

MARTINS, J. R. Rapid manufacturing - evaluation of 3D printing and FDM technologies in the production of rapid molds. 2006. Disponível em: https://doi.org/10.11606/d.18.2006.tde-18072006-101938. Acesso em: 20 mar. 2025. DOI: https://doi.org/10.11606/D.18.2006.tde-18072006-101938

MOBARAK, H. et al. Recent advances of additive manufacturing in implant fabrication – A review. Applied Surface Science Advances, v. 18, 2023. Disponível em: https://doi.org/10.1016/j.apsadv.2023.100462. Acesso em: 20 mar. 2025. DOI: https://doi.org/10.1016/j.apsadv.2023.100462

MOLDE INJEÇÃO PLÁSTICOS. SISTEMAS DE REFRIGERAÇÃO PARA MOLDES DE INJEÇÃO DE TERMOPLÁSTICOS – Molde Injeção Plásticos. Disponível em: <https://moldesinjecaoplasticos.com.br/sistemas-de-refrigeracao-para-moldes-de-injecao-de-termoplasticos/>. Acesso em: 2 out. 2025.

PAGE, M. J. et al. A declaração PRISMA 2020: diretriz atualizada para relatar revisões sistemáticas. Revista Panamericana de Salud Pública, v. 46, p. 1, 30 dez. 2022. DOI: https://doi.org/10.26633/RPSP.2022.112

PUGLIERO COELHO, C. et al. Gamification and inclusive special education: A systematic literature review. Revista Pedagógica, v. 24, n. 1, p. 1–23, 2022. Disponível em: https://doi.org/10.22196/rp.v24i1.6971. Acesso em: 20 mar. 2025. DOI: https://doi.org/10.22196/rp.v24i1.6971

RIBEIRO JUNIOR, A. S. Proposal for the use of CAE tools in the planning of the thermoplastic injection molding process in stereolithography molds. 2003. Tese (Doutorado) — Federal University of Santa Catarina. UFSC Repository. Disponível em: https://repositorio.ufsc.br/handle/123456789/84785. Acesso em: 20 mar. 2025.

SCHUH, G. et al. Feasibility and Process capability of polymer additive injection molds with slide technology. Procedia CIRP, v. 93, p. 102–107, 2020. DOI: https://doi.org/10.1016/j.procir.2020.03.057

VASCONCELOS, L. Performance of PLA inserts in hybrid molds for the injection of polypropylene parts. 2020. Disponível em: https://repositorio.ufsc.br/handle/123456789/248346. Acesso em: 20 mar. 2025.

Published

2025-10-29

How to Cite

SOUZA, Ana Clara Souto de; BENATTI, Lia Paletta; MOTTIN, Artur Caron; DAVID, Eduardo Cassiano Santos. Applications of 3D printing in the manufacturing of molds for injection molding of thermoplastics: a literature review. Sítio Novo Magazine, Palmas, v. 9, p. e1802, 2025. DOI: 10.47236/2594-7036.2025.v9.1802. Disponível em: https://sitionovo.ifto.edu.br/index.php/sitionovo/article/view/1802. Acesso em: 7 nov. 2025.

Issue

Section

Artigo Científico