Smart Factory e a indústria 4.0: uma revisão sistemática de literatura
DOI:
https://doi.org/10.47236/2594-7036.2022.v6.i2.141-155pPalavras-chave:
Fábrica Tradicional. Indústria 4.0. Smart Factory.Resumo
A mudança de uma fábrica tradicional para uma Smart Factory estimula o efeito profundo e duradouro da manufatura futura em todo o mundo. Como o coração da Indústria 4.0, a Smart Factory integra estruturas físicas com tecnologias dessa indústria, tornando-as mais precisas, com o propósito de melhorar o desempenho, qualidade, controle, gerenciamento e transparência dos processos de manufatura. Nessa perspectiva, o principal objetivo deste estudo é apresentar os desafios para implementação da Smart Factory no contexto da Indústria 4.0. Para o propósito desta pesquisa, foi elaborada uma Revisão Sistemática da Literatura (RSL), metodologia que agrupa trabalhos anteriores sobre um tema especifico, promovendo a identificação, a avaliação e a interpretação de estudos em uma determinada área por meio da análise de conceitos e práticas. Com base nos resultados obtidos, verificou-se que as principais indústrias começaram a jornada para implementar a Smart Factory, no entanto, a maioria ainda carece de compreensão sobre os desafios e recursos para implementá-la. Smart Factory não significa fábrica sem seres humanos, mas sim visa atender as necessidades individuais do mercado, tanto quanto possível, com custos razoáveis. Portanto, este artigo contribui para o corpo de conhecimento atual sobre a Smart Factory, identificando os seus requisitos e os principais desafios, investigando as principais tecnologias da Indústria 4.0 para implementação de uma Smart Factory, bem como também indicam os rumos de possíveis pesquisas futuras.Downloads
Métricas
Referências
ACETO, G.; PERSICO, V.; PESCAPÉ, A. Industry 4.0 and Health: Internet of Things, Big Data, and Cloud Computing for Healthcare 4.0. Journal of Industrial Information Integration, v. 18, n. February, p. 100129, 2020.
AKTER, S.; PERSICO, V.; PESCAPÉ, A. How to improve firm performance using big data analytics capability and business strategy alignment? International Journal of Production Economics, v. 182, p. 113–131, 2016.
ALMADA-LOBO, F. The Industry 4.0 revolution and the future of Manufacturing Execution Systems (MES). Journal of Innovation Management, v. 4, p. 16–21, 2015.
ATHINARAYANAN, R.; NEWELL, B.; GARCIA, J.; OSTANEK, J.; DIAO, X.; SUNDARARAJAN, R.; ZHANG, H.; RICHARDS, G. Learning in Context with Horizontally & Vertically Integrated Curriculum in a Smart Learning Factory. Procedia Manufacturing, v. 31, p. 91–96, 2019.
ATZORI, L.; IERA, A.; MORABITO, G. The Internet of Things: A survey. Computer Networks, v. 54, n. 15, p. 2787–2805, 2010.
AVERSA, R. PETRESCU, R.; PETRESCU, F.; APICELLA, A. Smart-factory: Optimization and process control of composite centrifuged pipes. American Journal of Applied Sciences, v. 13, n. 11, p. 1330–1341, 2016.
BADGER, L.; PATT-CORNER, R.; VOAS, J. Cloud Computing Synopsis and Recommendations Recommendations of the National Institute of Standards and Technology. Disponível em: <http://csrc.nist.gov/publications/nistpubs/800-146/sp800-146.pdf>. Acesso em: 25 dez. 2021.
BAHRIN, M.; OTHMAN, M.; AZLI, N.; TALIB, M. Industry 4.0: A Review on Industrial Automation and Robotic. Jurnal Teknologi, v. 78, p. 2180–3722, 2016.
BLANCO-NOVOA, O.; FERNANDEZ-CARAMES, T.; FRAGA-LAMAS, P.; VILAR-MONTESINOS, M. A Practical Evaluation of Commercial Industrial Augmented Reality Systems in an Industry 4.0 Shipyard. IEEE Access, v. 6, p. 8201–8218, 2018.
BRECHER, C.; ECKER, C.; HERFS, W.; OBDENBUSCH, M.; JESCHKE, S.; HOFFMANN, M.; MEISEN, T. Chapter 21 - The Need of Dynamic and Adaptive Data Models for Cyber-Physical Production Systems. In: SONG, H. et al. (Eds.). Intelligent Data-Centric Systems. Boston: Academic Press, 2017. p. 321–338.
CADAVID, J.; ALFÉREZ, M.; GÉRARD, S.; TESSIER, P. Conceiving the Model-Driven Smart Factory. ACM International Conference Proceeding Series. Anais 2015.
CHEKIRED, D. A.; KHOUKHI, L.; MOUFTAH, H. T. Industrial IoT Data Scheduling Based on Hierarchical Fog Computing: A Key for Enabling Smart Factory. IEEE Transactions on Industrial Informatics, v. 14, n. 10, p. 4590–4602, 2018.
CHEN, B.; WAN, J.; SHU, L.; LI, P.; MUKHERJEE, M.; YIN, B. Smart Factory of Industry 4.0: Key Technologies, Application Case, and Challenges. IEEE Access, v. 6, p. 6505–6519, 2017.
CIVERCHIA, F.; BOCCHINO, S.; SALVADORI, C.; ROSSI, E.; MAGGIANI, L.; PETRACCA, M. Industrial Internet of Things monitoring solution for advanced predictive maintenance applications. Journal of Industrial Information Integration, v. 7, p. 4–12, 2017.
DALENOGARE, L.; BENITEZ, G.; AYALA, N.; FRANK, A. The expected contribution of Industry 4.0 technologies for industrial performance. International Journal of Production Economics, v. 204, n. December 2017, p. 383–394, 2018.
DASTJERDI, A.; GUPTA, H.; CALHEIROS, R.; GHOSH, S.; BUYYA, R. Chapter 4 - Fog Computing: principles, architectures, and applications. In: BUYYA, R.; VAHID DASTJERDI, A. B. T.-I. OF T. (Eds.) Morgan Kaufmann, 2016. p. 61–75.
DRESCH, A.; LACERDA, D. P.; ANTUNES, J. A. V. J. Design Science Research Método de Pesquisa para Avanço da Ciência e Tecnologia. 1a ed. Porto Alegre: Bookman, 2015.
ELVIS HOZDIĆ. Smart factory for industry 4.0: a review. International Journal of Modern Manufacturing Technologies, v. VII, n. 1, p. 28–35, 2015.
ERMEL, A.; LACERDA, D.; MORANDI, M.; GAUSS, L. Literature Reviews - Modern Methods for Investigating Scientific and Technological Knowledge. 1a ed. Cham - Suíça: Springer, 2021.
FERNANDEZ-CARAMES, T. M.; FRAGA-LAMAS, P. A Review on Human-Centered IoT-Connected Smart Labels for the Industry 4.0. IEEE Access, v. 6, p. 25939–25957, 2018.
FOSSO WAMBA, S. AKTER, S.; EDWARDS, A.; CHOPIN, G.; GNANZOU, D. How ‘big data’ can make big impact: Findings from a systematic review and a longitudinal case study. International Journal of Production Economics, v. 165, p. 234–246, 2015.
FRAGA-LAMAS, P.; FERNÁNDEZ-CARAMÉS, T.; BLANCO-NOVOA, Ó.; VILAR-MONTESINOS, M. A Review on Industrial Augmented Reality Systems for the Industry 4.0 Shipyard. IEEE Access, v. 6, p. 13358–13375, 2018.
GANDOMI, A.; HAIDER, M. Beyond the hype: Big data concepts, methods, and analytics. International Journal of Information Management, v. 35, n. 2, p. 137–144, 2015.
GHOBAKHLOO, M.; CHING, N. T. Adoption of digital technologies of smart manufacturing in SMEs. Journal of Industrial Information Integration, v. 16, n. June, p. 100107, 2019.
GHOBAKHLOO, M.; FATHI, M. Corporate survival in Industry 4.0 era: the enabling role of lean-digitized manufacturing. Journal of Manufacturing Technology Management, v. 31, n. 1, p. 1–30, 2019.
GRABOWSKA, S. Smart Factories in the Age of Industry 4.0. Management Systems in Production Engineering, v. 28, p. 90–96, 2020.
HARRISON, R.; VERA, D.; AHMAD, B. Engineering the Smart Factory. Chinese Journal of Mechanical Engineering (English Edition), v. 29, n. 6, p. 1046–1051, 2016.
HERMANN, M.; PENTEK, T.; OTTO, B. Design Principles for Industrie 4.0 Scenarios. 2016 49th Hawaii International Conference on System Sciences (HICSS). Anais 2016
HERRMANN, F. The Smart Factory and its Risks. MDPI, v. 38, p. 1–15, 2018.
HWANG, G.; LEE, J.; PARK, J.; CHANG, T. Developing performance measurement system for Internet of Things and smart factory environment. International Journal of Production Research, v. 55, n. 9, p. 2590–2602, 3 maio 2017.
IVANOV, D.; DOLGUI, A.; SOKOLOV, B.; WERNER, F.; IVANOVA, M. A dynamic model and an algorithm for short-term supply chain scheduling in the smart factory industry 4.0. International Journal of Production Research, v. 54, n. 2, p. 386–402, 17 jan. 2016.
JERMAN, A.; ERENDA, I.; BERTONCELJ, A. The Influence of Critical Factors on Business Model at a Smart Factory: A Case Study. Business Systems Research, v. 10, n. 1, p. 42–52, 2019.
JUNG, K.; CHOI, S.; KULVATUNYOU, B.; CHO, H.; MORRIS, K. A reference activity model for smart factory design and improvement. Production Planning & Control, v. 28, n. 2, p. 108–122, 25 jan. 2017a.
JUNG, S.; PARK, K.; ROH, H.; YUNE, S.; LEE, G.; CHUN, K. Research trends in studies of medical students’ characteristics: A scoping review. Korean Journal of Medical Education, v. 29, n. 3, p. 137–152, 2017b.
KANG, Y. S.; PARK, I. H.; YOUM, S. Performance prediction of a MongoDB-Based traceability system in smart factory supply chains. Sensors (Switzerland), v. 16, n. 12, p. 1–14, 2016.
KLINGENBERG, C. O.; BORGES, M. A. V.; ANTUNES, J. A. V. Industry 4.0 as a Data-Driven Paradigm: A Systematic Literature Review on Technologies. Journal of Manufacturing Technology Management, v. 32, n. 3, p. 570–592, 2021.
KO, M.; KIM, C.; LEE, S. An Assessment of Smart Factories in Korea: An Exploratory Empirical Investigation. MDPI, v. 10, p. 1–15, 2020.
KONG, L.; ZHANG, D.; HE, Z.; XIANG, Q.; WAN, J.; TAO, M. Embracing big data with compressive sensing: a green approach in industrial wireless networks. IEEE Communications Magazine, v. 54, n. 10, p. 53–59, 2016.
LEE, E. A. CPS foundations. Proceedings - Design Automation Conference. Anais 2010
LEE, E. A. The past, present and future of cyber-physical systems: A focus on models. Sensors (Switzerland), v. 15, n. 3, p. 4837–4869, 2015.
LI, D. Perspective for smart factory in petrochemical industry. Computers & Chemical Engineering, v. 91, p. 136–148, 2016.
LONGO, F.; NICOLETTI, L.; PADOVANO, A. Smart operators in industry 4.0: A human-centered approach to enhance operators capabilities and competencies within the new smart factory context. Computers & Industrial Engineering, v. 113, p. 144–159, 2017.
LUGERT, A.; BATZ, A.; WINKLER, H. Empirical assessment of the future adequacy of value stream mapping in manufacturing industries. Journal of Manufacturing Technology Management, v. 29, n. 5, p. 886–906, 2018.
MABKHOT, M.; AL-AHMARI, A.; SALAH, B.; ALKHALEFAH, H. Requirements of the smart factory system: A survey and perspective. Machines, v. 6, n. 2, 2018.
MOHAMED, N.; AL-JAROODI, J.; LAZAROVA-MOLNAR, S. Leveraging the Capabilities of Industry 4.0 for Improving Energy Efficiency in Smart Factories. IEEE Access, v. 7, p. 18008–18020, 2019.
OZTEMEL, E.; GURSEV, S. Literature review of Industry 4.0 and related technologies. Journal of Intelligent Manufacturing, v. 31, n. 1, p. 127–182, 2018.
PAELKE, V. Augmented Reality in the Smart Factory. 2014 IEEE International Conference on Emerging Technologies and Factory Automation (ETFA). Anais...IEEE, 2014
PARK, S. Development of Innovative Strategies for the Korean Manufacturing Industry by Use of the Connected Smart Factory (CSF). Procedia Computer Science, v. 91, n. Itqm, p. 744–750, 2016.
PRINZ, C.; MORLOCK, F.; FREITH, S.; KREGGENFELD, N.; KREIMEIER, D.; KUHLENKÖTTER, B. Learning Factory Modules for Smart Factories in Industrie 4.0. Procedia CIRP, v. 54, p. 113–118, 2016.
PROVOST, F.; FAWCETT, T. Data Science and its Relationship to Big Data and Data-Driven Decision Making. Big Data, v. 1, n. 1, p. 51–59, 13 fev. 2013.
SCHNEIDER, P. Managerial challenges of Industry 4.0: an empirically backed research agenda for a nascent field. Review of Managerial Science, v. 12, n. 3, p. 803–848, 2018.
SHI, Z.; XIE, Y.; XUE, W.; CHEN, Y.; FU, L.; XU, X. Smart factory in Industry 4.0. Systems Research and Behavioral Science, v. 37, n. 4, p. 607–617, 2021.
SJÖDIN, D.; PARIDA, V.; LEKSELL, M.; PETROVIC, A. Smart Factory Implementation and Process Innovation. Research Technology Management, v. 61, n. 5, p. 22–31, 2018.
SONG, Z.; SUN, Y.; WAN, J.; LIANG, P. Data quality management for service-oriented manufacturing cyber-physical systems. Computers and Electrical Engineering, v. 64, p. 1339–1351, 2017.
SYBERFELDT, A.; DANIELSSON, O.; GUSTAVSSON, P. Augmented Reality Smart Glasses in the Smart Factory: Product Evaluation Guidelines and Review of Available Products. IEEE Access, v. 5, p. 9118–9130, 2017.
TORTORELLA, G. L.; NARAYANAMURTHY, G.; THURER, M. Identifying pathways to a high-performing lean automation implementation: An empirical study in the manufacturing industry. International Journal of Production Economics, v. 231, n. April 2020, p. 107918, 2021.
VEZA, I.; MLADINEO, M.; GJELDUM, N. Managing Innovative Production Network of Smart Factories. IFAC-PapersOnLine, v. 28, n. 3, p. 555–560, 2015.
WAGIRE, A. A.; RATHORE, A. P. S.; JAIN, R. Analysis and synthesis of Industry 4.0 research landscape: Using latent semantic analysis approach. Journal of Manufacturing Technology Management, v. 31, n. 1, p. 31–51, 2020.
WAN, J.; YI, M.; LI, D.; ZHANG, C.; WANG, S.; ZHOU, K. Mobile Services for Customization Manufacturing Systems: An Example of Industry 4.0. IEEE Access, v. 4, p. 8977–8986, 2016a.
WAN, J.; TANG, S.; YAN, H.; LI, D.; WANG, S.; VASILAKOS, A. Cloud robotics: Current status and open issues. IEEE Access, v. 4, p. 2797–2807, 2016b.
WAN, J.; YANG, J.; WANG, Z.; HUA, Q. Artificial Intelligence for Cloud-Assisted Smart Factory. IEEE Access, v. 6, p. 55419–55430, 2018.
WAN, J.; LI, J.; IMRAN, M.; LI, D. A Blockchain-Based Solution for Enhancing Security and Privacy in Smart Factory. IEEE Transactions on Industrial Informatics, v. 15, n. 6, p. 3652–3660, 2019.
WANG, S.; WAN, J.; LI, D.; ZHANG, C. Implementing Smart Factory of Industrie 4.0: An Outlook. International Journal of Distributed Sensor Networks, v. 2016, p. 1–10, 2016.
WANG, S.; OUYANG, J.; LI, D.; LIU, C. An integrated industrial ethernet solution for the implementation of smart factory. IEEE Access, v. 5, p. 25455–25462, 2017a.
WANG, S.; WAN, J.; IMRAN, M.; LI, D.; ZHANG, C. Cloud-based smart manufacturing for personalized candy packing application. The Journal of Supercomputing, v. 74, n. 9, p. 4339–4357, 2018.
WANG, Y.; MA, H.; YANG, J.; WANG, K. Industry 4.0: a way from mass customization to mass personalization production. Advances in Manufacturing, v. 5, n. 4, p. 311–320, 2017b.
XU, L. DA; HE, W.; LI, S. Internet of things in industries: A survey. IEEE Transactions on Industrial Informatics, v. 10, n. 4, p. 2233–2243, 2014.
XU, X.; HUA, Q. Industrial Big Data Analysis in Smart Factory: Current Status and Research Strategies. IEEE Access, v. 5, p. 17543–17551, 2017.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2022 Rodrigo Soares Lelis Gori, Deine Danielle Lelis Gori

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Permite o compartilhamento, adaptação e uso para quaisquer fins, inclusive comerciais, desde que feita a devida atribuição aos autores e à Revista Sítio Novo.
Os autores declaram que o trabalho é original, não foi previamente publicado em parte ou no todo, exceto em servidores de preprints reconhecidos, desde que declarado, e que nenhum outro manuscrito similar de sua autoria está publicado ou em processo de avaliação por outro periódico, seja impresso ou eletrônico.
Declaram que não violaram nem infringiram nenhum tipo de direito de propriedade de outras pessoas, e que todas as citações no texto são fatos verdadeiros ou baseados em pesquisas de exatidão cientificamente considerável.
Os autores mantêm os direitos autorais dos manuscritos publicados nesta revista, permitindo o uso irrestrito de seu conteúdo, desde que citada a autoria original e a fonte da publicação.













