Potential of Agave sisalana residues in the production of second-generation biofuels: a systematic review

Authors

DOI:

https://doi.org/10.47236/2594-7036.2025.v9.1686

Keywords:

Agave sisalana, Bioethanol, Second-generation biofuels, Pretreatment, Agro-industrial residues

Abstract

Agave is widely cultivated in Brazil, with 96% of the plant being discarded as waste after fiber extraction. This biomass, rich in cellulose, hemicellulose, and lignin, offers high potential for bioethanol production. This study aimed to analyze the technological pathways for converting Agave sisalana industrial residues into second-generation biofuels. A systematic review was conducted using the Scopus and Google Scholar databases, covering publications from 2015 to 2024. The following keywords were used: “agave and residues or biofuels and from and agave,” “agave residues,” and “sustainable processing Agave.” A total of 38 publications addressing pretreatment, hydrolysis, and fermentation processes for the conversion of Agave residues into biofuels were analyzed. The results demonstrated that Agave bagasse can be efficiently converted into ethanol through pretreatment methods such as autohydrolysis and steam explosion, achieving ethanol yields above 85%. However, the economic viability still faces challenges, especially related to the optimization of enzymatic cocktails and the integration of new technologies. It is concluded that sisal residues represent a sustainable solution for bioenergy production, thus contributing to the circular economy and the mitigation of environmental impacts.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Mirella Riva, Federal University of Tocantins

Master's student in Digital Agroenergy at the Federal University of Tocantins. Palmas, Tocantins, Brazil. Email address: mirella.riva@mail.uft.edu.br. Orcid: https://orcid.org/0009-0008-7944-7337. Lattes Curriculum: http://lattes.cnpq.br/5335078562320421.

Daiane Cecchin, Fluminense Federal University

PhD in Agricultural Engineering from the Federal University of Lavras. Professor at the Fluminense Federal University and the Digital Agroenergy Graduate Program at the Federal University of Tocantins. Niterói, Rio de Janeiro, Brazil. Email address: daianececchin@id.uff.br. Orcid: https://orcid.org/0000-0002-6098-1846. Lattes Curriculum: http://lattes.cnpq.br/6666655331177147.

Juliana Lobo Paes, Federal Rural University of Rio de Janeiro

PhD in Agricultural Engineering from the Federal University of Viçosa. Professor at the Federal Rural University of Rio de Janeiro and the Digital Agroenergy Graduate Program at the Federal University of Tocantins. Seropédica, Rio de Janeiro, Brazil. Email address: juliana.lobop@gmail.com. Orcid: https://orcid.org/0000-0001-9301-0547. Lattes Curriculum: http://lattes.cnpq.br/8567579362150921.

Guilherme Benko Siqueira, Federal University of Tocantins

PhD in Animal Science from the Federal University of Lavras. Professor at the Federal University of Tocantins. Palmas, Tocantins, Brazil. Email address: guibenko@uft.edu.br. Orcid: https://orcid.org/0000-0002-0572-2788. Lattes Curriculum: http://lattes.cnpq.br/3964828601706257.

References

AGUILAR, D. L. et al. Scale-up and evaluation of hydrothermal pretreatment in isothermal and non-isothermal regimen for bioethanol production using agave. Bioresource Technology, v. 263, p. 112-119, 2018. DOI: https://doi.org/10.1016/j.biortech.2018.04.100. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S0960852418306230?via%3Dihub. Acesso em: 10 set. 2024. DOI: https://doi.org/10.1016/j.biortech.2018.04.100

AGUIRRE-FIERRO, A. et al. Sustainable high-pressure pretreatment of Agave bagasse for ethanol production. Renewable Energy, v. 155, p. 1347-1354, 2020. DOI: https://doi.org/10.1016/j.renene.2020.04.055. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S0960148120305875?via%3Dihub. Acesso em: 10 set. 2024. DOI: https://doi.org/10.1016/j.renene.2020.04.055

ÁVILA-GAXIOLA, J. C.; ÁVILA-GAXIOLA, E. Ethanol production from Agave tequilana leaves powder by Saccharomyces cerevisiae yeast applying enzymatic saccharification without detoxification. Industrial Crops and Products, v. 177, p. 114515, 2022. DOI: https://doi.org/10.1016/j.indcrop.2021.114515. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S0926669021012802?via%3Dihub. Acesso em: 16 set. 2024. DOI: https://doi.org/10.1016/j.indcrop.2021.114515

AZEVEDO, A. N. G. de; LIMA, B. G. de A. Biocombustíveis: desenvolvimento e inserção internacional. Revista Direito Ambiental e Sociedade, v. 6, n. 1, p. 77-100, 2016. Disponível em: https://sou.ucs.br/etc/revistas/index.php/direitoambiental/article/view/2693. Acesso em: 15 set. 2024.

BARRERA, I. et al. Technical and economical evaluation of bioethanol production from lignocellulosic residues in Mexico: Case of sugarcane and blue agave bagasse. DOI: https://doi.org/10.1016/j.cherd.2015.10.015. Chemical Engineering Research and Design, v. 107, p. 91-101, 2016. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S0263876215003895?via%3Dihub. Acesso em: 17 set. 2024. DOI: https://doi.org/10.1016/j.cherd.2015.10.015

BASSO, T. P. et al. Engineering xylose fermentation in an industrial yeast: continuous cultivation as a tool for selecting improved strains. Letters in Applied Microbiology, v. 76, n. 7, 2023. DOI: https://doi.org/10.1093/lambio/ovad077. Disponível em: https://academic.oup.com/lambio/article;-abstract/76/7/ovad077/7220545?redirectedFrom=fulltext. Acesso em: 20 set. 2024. DOI: https://doi.org/10.1093/lambio/ovad077

BRASIL. Companhia Nacional de Abastecimento. Sisal: Análise mensal. 2023. Disponível em: https://www.conab.gov.br/busca. Acesso em: 16 set. 2024.

BRASIL. Ministério de Minas e Energia. Produção de biocombustíveis cresce no Brasil e alcança recorde histórico. 17 jul. 2024. Disponível em: https://www.gov.br/mme/pt-br/assuntos/noticias/producao-de-biocombustiveis-cresce-no-brasil-e-alcanca-recorde-historico. Acesso em: 16 set. 2024.

CASPETA, L. et al. Enzymatic hydrolysis at high-solids loadings for the conversion of agave bagasse to fuel ethanol. Applied Energy, v. 113, p. 277-286, 2014. DOI: https://doi.org/10.1016/j.apenergy.2013.07.036. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S0306261913006028?via%3Dihub. Acesso em: 22 set. 2024. DOI: https://doi.org/10.1016/j.apenergy.2013.07.036

DAHER, C. C. et al. Use of sisal industrial waste (Agave sisalana Perrine) in sustainable and multifunctional cosmetic products. Internactional Journal of Cosmetic Science, v. 45, n. 6, p. 815-833, 2023. DOI: https://doi.org/10.1111/ics.12890. Disponível em: https://onlinelibrary.wiley.com/doi/10.1111/ics.12890. Acesso em: 03 out. 2024. DOI: https://doi.org/10.1111/ics.12890

DELFIN-RUIZ, M. E. et al. Ethanol Production from Enzymatic Hydrolysates Optimized of Agave tequilana Weber var. azul and Agave karwinskii bagasses. BioEnergy Research, v. 14, p. 785-798, 2021. DOI: https://doi.org/10.1007/s12155-020-10196-7. Disponível em: https://link.springer.com/article/10.1007/s12155-020-10196-7. Acesso em: 10 out. 2024. DOI: https://doi.org/10.1007/s12155-020-10196-7

ORGANIZAÇÃO DAS NAÇÕES UNIDAS PARA A ALIMENTAÇÃO E AGRICULTURA (FAO). Fibras do Futuro: Sisal. Disponível em: https://www.fao.org/economic/futurefibres/fibres/sisal/en/. Acesso em: 10 set. 2024.

FLORES-GÓMEZ, C. A. et al. Conversion of lignocellulosic agave residues into liquid biofuels using an AFEX™-based biorefinery. Biotechnology for Biofuels, v. 11, n. 7, p. 1-18, 2018. DOI: https://doi.org/10.1186/s13068-017-0995-6. Disponível em: https://biotechnologyforbiofuels.biomedcentral.com/articles/10.1186/s13068-017-0995-6. Acesso em: 15 set. 2024.

HERNÁNDEZ-VÁZQUEZ, A.; HERNÁNDEZ, S.; ORTIZ, I. Hydrothermal pretreatment of agave bagasse for biomethane production: Operating conditions and energy balance Biomass and Bioenergy, v. 142, 2020. DOI: https://doi.org/10.1016/j.biombioe.2020.105753. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S0961953420302877?via%3Dihub. Acesso em: 19 set. 2024. DOI: https://doi.org/10.1016/j.biombioe.2020.105753

KUMAR, A.; RAM, C. Agave biomass: a potential resource for production of value-added products. Environmental Sustainability, v. 4, p. 245-259, 2021. DOI: https://doi.org/10.1007/s42398-021-00172-y.Disponível em: https://link.springer.com/article/10.1007/s42398-021-00172-y. Acesso em: 10 set. 2024. DOI: https://doi.org/10.1007/s42398-021-00172-y

LÁZARO-ROMERO, A. et al. Optimizing cellulose fraction for enhanced utility: Comparative pre-treatment of Agave tequilana Weber var. blue bagasse fiber for sustainable applications. Heliyon, v. 10, e29149, 2024. DOI: https://doi.org/10.1016/j.heliyon.2024.e29149. Disponível em: https://www.cell.com/heliyon/fulltext/S2405-8440(24)05180-6?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS2405844024051806%3Fshowall%3Dtrue. Acesso em: 6 out. 2024.

MALIK, K. et al. Enhanced ethanol production by Saccharomyces cerevisiae fermentation post acidic and alkali chemical pretreatments of cotton stalk lignocellulose. International Biodeterioration & Biodegradation, v. 147, p. 104869, 2020. DOI: https://doi.org/10.1016/j.ibiod.2019.104869. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S0964830519314118?via%3Dihub. Acesso em: 19 set. 2024. DOI: https://doi.org/10.1016/j.ibiod.2019.104869

OGBU, C. C.; OKECHUKWU, S. N. Agro-Industrial Waste Management: The Circular and Bioeconomic Perspective. In: AHMAD, F.; SULTAN, M. (ed.). Agricultural Waste – New Insights. Londres: IntechOpen, 2023. DOI: http://dx.doi.org/10.5772/intechopen.109181. Disponível em: https://www.intechopen.com/chapters/85597. Acesso em: 20 set. 2024

PALOMO-BRIONES, R. et al. Agave bagasse biorefinery: processing and perspectives. Clean Technologies and Environmental Policy, v. 20, p. 1423-1441, 2018. DOI: https://doi.org/10.1007/s10098-017-1421-2. Disponível em: https://link.springer.com/article/10.1007/s10098-017-1421-2. Acesso em: 16 set. 2024. DOI: https://doi.org/10.1007/s10098-017-1421-2

PARASCANU, M. M. et al. Environmental and economic analysis of bioethanol production from sugarcane molasses and agave juice. Environmental Science and Pollution Research, v. 28, p. 64374-64393, 2021. DOI: https://doi.org/10.1007/s11356-021-15471-4. Disponível em: https://link.springer.com/article/10.1007/s11356-021-15471-4. Acesso em: 17 set. 2024. DOI: https://doi.org/10.1007/s11356-021-15471-4

PÉREZ-PIMIENTA, J. A. et al. Sequential enzymatic saccharification and fermentation of ionic liquid and organosolv pretreated agave bagasse for ethanol production. Bioresource Technology, v. 225, p. 191-198, 2017. DOI: https://doi.org/10.1016/j.biortech.2016.11.064.Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S0960852416315851?via%3Dihub. Acesso em: 16 out. 2024. DOI: https://doi.org/10.1016/j.biortech.2016.11.064

RIJAL, D. et al. Process options for conversion of Agave tequilana leaves to bioethanol. Industrial Crops and Products, v. 84, p. 263-272, 2016. DOI: https://doi.org/10.1016/j.indcrop.2016.02.011. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S0926669016300802?via%3Dihub. Acesso em: 20 set. 2024. DOI: https://doi.org/10.1016/j.indcrop.2016.02.011

RIOS-GONZÁLEZ, L. J. et al. Autohydrolysis pretreatment assessment in ethanol production from agave bagasse. Bioresource Technology, v. 242, p. 184-190, 2017. DOI: https://doi.org/10.1016/j.biortech.2017.03.039. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S0960852417303097?via%3Dihub. Acesso em: 10 set. 2024. DOI: https://doi.org/10.1016/j.biortech.2017.03.039

SHIVA, S. et al. Enzymatic Hydrolysis, Kinetic Modeling of Hemicellulose Fraction, and Energy Efficiency of Autohydrolysis Pretreatment Using Agave Bagasse. Bionergy Research, v. 16, p. 75-87, 2023. DOI: https://doi.org/10.1007/s12155-022-10442-0. Disponível em: https://link.springer.com/article/10.1007/s12155-022-10442-0. Acesso em: 14 out. 2024. DOI: https://doi.org/10.1007/s12155-022-10442-0

SILVA, A. J. M. da et al.; Estudo de viabilidade de usina de biogás para geração de energia elétrica em Sítio Novo do Tocantins. Revista Sítio Novo, v. 5, n. 3, p. 6-15, 2021. DOI: https://doi.org/10.47236/2594-7036.2021.v5.i3.6-15p. Disponível em: https://sitionovo.ifto.edu.br/index.php/sitionovo/article/view/909. Acesso em: 14 out. 2024. DOI: https://doi.org/10.47236/2594-7036.2021.v5.i3.6-15p

SOARES, V. L. et al. Potencial de utilização do suco de sisal como matéria-prima para produção biológica sequencial de hidrogênio e metano. Revista Brasileira de Engenharia Química, v. 41, p. 97-108, 2024. DOI: https://doi.org/10.1007/s43153-023-00342-x. Disponível: https://link.springer.com/article/10.1007/s43153-023-00342-x. Acesso em: 16 set. 2024.

YANG, L. et al. Biomass characterization of Agave and Opuntia as potential biofuel feedstocks. Biomass and Bioenergy, v. 76, p. 43-53, 2015. DOI: https://doi.org/10.1016/j.biombioe.2015.03.004. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S0961953415000847?via%3Dihub. Acesso em: 13 out. 2024. DOI: https://doi.org/10.1016/j.biombioe.2015.03.004

YOGI, Y. A.; GARUSTI, G.; SANTOSO, B. Potential Use of Waste Plant Decortication of Sisal (Agave sisalana). Perspektif, v. 20, n. 1, p. 01-10, 2021. DOI: http://dx.doi.org/10.21082/psp.v20n1.2021. 01-10. Disponível em: https://www.researchgate.net/publication/356539189_POTENSI_DAN_PEMANFAATAN_LIMBAH_DEKORTIKASI_TANAMAN_SISAL_Agave_sisalana_Potential_Use_of_Waste_Plant_Decortication_of_SisalAgave_sisalana. Acesso em: 14 out. 2024. DOI: https://doi.org/10.21082/psp.v20n1.2021.01-10

Published

2025-07-10

How to Cite

RIVA, Mirella; CECCHIN, Daiane; PAES, Juliana Lobo; SIQUEIRA, Guilherme Benko. Potential of Agave sisalana residues in the production of second-generation biofuels: a systematic review. Sítio Novo Magazine, Palmas, v. 9, p. e1686, 2025. DOI: 10.47236/2594-7036.2025.v9.1686. Disponível em: https://sitionovo.ifto.edu.br/index.php/sitionovo/article/view/1686. Acesso em: 1 jan. 2026.

Issue

Section

Artigo Científico