Application development for vibration pattern analysis of compressors
DOI:
https://doi.org/10.47236/2594-7036.2026.v10.1887Keywords:
IoT, Predictive maintenance, Signal processing, Software development, Vibration analysisAbstract
This work presents an application for analyzing vibration patterns in compressors used in HVAC systems. The main objective was to validate a software architecture capable of processing, storing, and visualizing signals from noisy MEMS sensors, common in resource-constrained scenarios. The methodology was based on developing a desktop application in Python, integrating capture via MQTT protocol, persistence in a PostgreSQL database, and signal processing via Fast Fourier Transform (FFT) and Short-Time Fourier Transform (STFT) algorithms. For the application validation, an acquisition node based on ESP8266 and MPU-6050 sensor was used on an induction motor. The results showed that the system processed 256-sample buffers with a transmission and rendering latency of 3.4 seconds. Spectral analysis identified the fundamental vibration frequency around 120 Hz to 125 Hz, presenting an acceptable deviation from the theoretical expectation (120 Hz) given the spectral resolution imposed by the sampling window. It is concluded that the developed model is effective for screening and remote monitoring, compensating for hardware limitations through robust processing and visualization techniques, offering a cost-effective alternative that acts as a monitoring hub to assist maintenance teams.Downloads
Metrics
References
BALDISSARELLI, L. N.; FABRO, E. Manutenção preditiva na indústria 4.0. Scientia cum Industria, [S. l.], v. 7, n. 2, p. 12-22, 2019. Disponível em: https://sou.ucs.br/etc/revistas/index.php/scientiacumindustria/article/view/6835. Acesso em: 9 fev. 2026. DOI: https://doi.org/10.18226/23185279.v7iss2p12
CYRINO, L. Diagnóstico de falhas das vibrações. 2017. Disponível em: https://www.manutencaoemfoco.com.br/diagnostico-de-falhas-das-vibracoes/. Acesso em: 8 jan. 2025.
FINLEY, W. R.; HODOWANEC, M. M.; HOLTER, W. G. An analytical approach to solving motor vibration problems. In: IEEE INDUSTRY APPLICATIONS SOCIETY ANNUAL MEETING, 46., 1999, Phoenix. Conference Record [...]. Phoenix: IEEE, 1999. p. 217–232. DOI: https://doi.org/10.1109/PCICON.1999.806440
HARRIS, C. R. et al. Array programming with NumPy. Nature, London, v. 585, n. 7825, p. 357–362, 2020. DOI: https://doi.org/10.1038/s41586-020-2649-2
HUNTER, J. D. Matplotlib: A 2D graphics environment. Computing in Science & Engineering, New York, v. 9, n. 3, p. 90–95, 2007. DOI: https://doi.org/10.1109/MCSE.2007.55
JARDINE, A. K. S.; LIN, D.; BANJEVIC, D. A review on machinery diagnostics and prognostics implementing condition-based maintenance. Mechanical Systems and Signal Processing, Amsterdam, v. 20, n. 7, p. 1483-1510, 2006. DOI: https://doi.org/10.1016/j.ymssp.2005.09.012
KANBAN UNIVERSITY. The Kanban Guide. 2021. Disponível em: https://kanban.university/kanban-guide/. Acesso em: 20 jan. 2025.
LEE, J.; BAGHERI, B.; KAO, H.-A. A Cyber-Physical Systems architecture for Industry 4.0-based manufacturing systems. Manufacturing Letters, [S.l.], v. 3, p. 18-23, 2015. DOI: https://doi.org/10.1016/j.mfglet.2014.12.001
MCFEE, B. et al. Librosa: Audio and Music Signal Analysis in Python. In: PYTHON IN SCIENCE CONFERENCE, 14., 2015, Austin. Proceedings [...]. Austin: SciPy, 2015. p. 18-24. DOI: https://doi.org/10.25080/Majora-7b98e3ed-003
OPPENHEIM, A. V.; SCHAFER, R. W. Discrete-Time Signal Processing. 3. ed. Upper Saddle River: Pearson, 2010.
PDOC. Pdoc Documentation. 2025. Disponível em: https://pdoc.dev/docs/pdoc.html. Acesso em: 25 set. 2025.
PEREIRA, A. C.; SIMONETTO, E. O. Indústria 4.0: conceitos e perspectivas para o Brasil. Revista da Universidade Vale do Rio Verde, Três Corações, v. 16, n. 1, p. 1-12, 2018. DOI: https://doi.org/10.5892/ruvrd.v16i1.4938
POSTGRESQL GLOBAL DEVELOPMENT GROUP. PostgreSQL 16.1 Documentation. 2025. Disponível em: https://www.postgresql.org/docs/. Acesso em: 11 jan. 2025.
SAFIZADEH, M. S.; LAKIS, A. A.; THOMAS, M. Using Short-Time Fourier Transform in Machinery Diagnosis. In: INTERNATIONAL CONFERENCE ON CONDITION MONITORING AND DIAGNOSTIC ENGINEERING MANAGEMENT, 18., 2005, Cranfield. Proceedings [...]. Cranfield: COMADEM, 2005. p. 305-314.
SCHWABER, K.; SUTHERLAND, J. The Scrum Guide: The definitive guide to Scrum. 2020. Disponível em: https://scrumguides.org/scrum-guide.html. Acesso em: 20 jan. 2025.
SMITH, S. W. The Scientist and Engineer's Guide to Digital Signal Processing. San Diego: California Technical Publishing, 1997.
THINGSBOARD. ThingsBoard Documentation. 2025. Disponível em: https://thingsboard.io/docs/. Acesso em: 25 set. 2025.
VAVASSORI, M. M. et al. Análise de falhas em equipamentos utilizando sensores de baixo custo, como método de manutenção preditiva. Periódico Científico da UniSATC, Criciúma, v. 7, n. 2, p. 136–194, 2022.
VISUAL STUDIO CODE. Documentation. 2025. Disponível em: https://code.visualstudio.com/docs. Acesso em: 11 jan. 2025.
Downloads
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 João Vitor Gouveia de Lima, Meuse Nogueira de Oliveira Júnior

This work is licensed under a Creative Commons Attribution 4.0 International License.
It allows sharing, adaptation, and use for any purpose, including commercial use, provided proper attribution is given to the authors and to Revista Sítio Novo.
The authors declare that the work is original and has not been previously published, in whole or in part, except on recognized preprint servers, if declared, and that no other similar manuscript authored by them is published or under review by another journal, whether printed or electronic.
They declare that they have not violated or infringed upon any proprietary rights of others, and that all citations in the text are factual or based on research with scientifically significant accuracy.
The authors retain the copyright of the manuscripts published in this journal, allowing unrestricted use of their content, provided that the original authorship and the publication source are properly cited.
Funding data
-
Ministério da Educação
Grant numbers Bolsa PIBIC - Instituto Federal de Educação, Ciência e Tecnologia de Pernambuco















