Analysis of forest fragmentation in a watershed in southern Espírito Santo
A study using Amazonia-1
DOI:
https://doi.org/10.47236/2594-7036.2026.v10.1904Keywords:
Environmental monitoring, Land use and land cover, Satellite, Supervised classification, Remote sensingAbstract
The expansion of agriculture, urbanization, and other anthropogenic activities has intensified the fragmentation of natural landscapes across Brazil’s biomes. In the state of Espírito Santo, the remaining Atlantic Forest is under strong pressure. The objective of this study is to assess the degree of forest fragmentation in the Horizonte stream watershed, Espírito Santo, using images from the Amazonia-1 satellite. The study area is located in the municipality of Alegre and covers 13.17 km². Altitudes range from 120 to 680 m, and the regional climate is classified as “Cfa.” Two Level L4 processed images were used in the study, one representing the dry season and the other the rainy season. For the supervised classification of the images, samples were collected using Google Satellite imagery as support, identifying Forest Fragment and Other Land Cover classes. The Dzetsaka image classification plugin was used for this process. The average forest fragment area was 4.89 km², corresponding to 37% of the watershed, while other classes accounted for 8.20 km². To assess classification accuracy, the Kappa index was calculated, resulting in 0.73 and 0.68 for the dry and rainy season images, respectively. Therefore, it can be concluded that the application of remote sensing, combined with Amazonia-1 WFI images and supervised classification, proved to be a classification that was characterized as "very good".Downloads
References
ANDRÉN, H. Effects of habitat fragmentation on birds and mammals in landscapes with different proportions of suitable habitat. Oikos, v. 1, n. 3, p. 355–366, 1994. DOI: https://doi.org/10.2307/3545823.
COLEMAN, K; KUENZER, C. Forest Fragmentation in Bavaria: A First-Time Quantitative Analysis Based on Earth Observation Data. Remote Sensing. v. 17, n. 5, p. 2558, 2025. DOI: https://doi.org/10.3390/rs17152558.
CONGALTON, R. G., & GREEN, K. Assessing the Accuracy of Remotely Sensed Data: principles and Practices (3rd ed.). CRC Press, 2019.
COHEN, J. A Coefficient of Agreement for Nominal Scales. Educational and Psychological Measurement. v. 20, n. 1, p. 37-46, 1960.
FAHRIG, L. Effects of habitat fragmentation on biodiversity. Annual Review of Ecology, Evolution, and Systematics, v. 34, p. 487–515, 2003.
DOI: https://doi.org/10.1146/annurev.ecolsys.34.011802.132419
FEITOSA, J. V. P. et al. Identificação analítica de classes de desflorestamento com o sensor WFI-AMAZONIA-1, no Projeto Deter-Amazonia. 2023. In: Anais... do XX Simpósio Brasileiro de Sensoriamento Remoto, v. 20, 2023.
FERRARI, J. L.; SILVA, S. F. DA; SANTOS, A. R. DOS; GARCIA, R. F.. Corredores ecológicos potenciais na subbacia hidrográfica do córrego Horizonte, Alegre-ES, indicados por meio de SIG. Revista Brasileira de Ciências Agrárias, v. 7, n. 1, p. 133-141, 2012.
FERRARI, J. L.; DA SILVA, S. F.; SANTOS, A. R.; GARCIA, R. F. Análise morfométrica da sub-bacia hidrográfica do córrego Horizonte, Alegre, ES. Revista Brasileira de Ciências Agrárias, n. 8, v. 2, p.181-188, 2013. DOI: https://doi.org/10.5039/agraria.v8i2a1575.
FORMAN, R. T. T. Land mosaics: the ecology of landscapes and regions. Cambridge: Cambridge University Press, 1995.
GEOBASES - Sistema Integrado de Bases Geoespaciais do Estado do Espírito Santo. Downloads, 2025. Disponível em: https://geobases.es.gov.br/. Acesso em: 5 jul. 2025.
HANEDA, Leo E. et al. Caracterização do comportamento espectral e distinção de tipologias florestais utilizando imagens orbitais multiespectrais de alta resolução. Anais..., 2023. In: Anais... São José dos Campos, SP: Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, 2023. Disponível em: https://proceedings.science/sbsr-2023/trabalhos/caracterizacao-do-comportamento-espectral-e-distincao-de-tipologias-florestais-u?lang=pt-br. Acesso em: 5 fev. 2026.
IBGE – Instituto Brasileiro de Geografia e Estatística. Manual Técnico da Vegetação Brasileira (2. ed.). Rio de Janeiro: IBGE, 2012.
INMET. Instituto Nacional De Meteorologia. Estações Automáticas: Alegre ES, 2025. Disponível em: https://mapas.inmet.gov.br/. Acesso em: 5 jul. 2025.
INPE, Instituto Nacional de Pesquisas Espaciais. Amazonia 1: Descritivo da Missão e do Satélite. 2021.
INPE - Instituto Nacional de Pesquisas Espaciais. Catálogo, 2025. Disponível em: https://www.dgi.inpe.br/catalogo/explore. Acesso em: 5 jul 2025.
LANDIS, J. R.; KOCH, G. G. The measurement of observer agreement for categorical data. Biometrics, v.33, n.1, p.159-174, 1977.
LONGO, R. M., da S., A. L., RIBEIRO, A. I., GOMES, R. C., SPERANDIO, F. C., & NUNES, A. N. (2024). Evaluating the Environmental Quality of Forest Remnants Using Landscape Metrics. Sustainability, v. 6, n. 4, p. 1543, 2024. DOI: https://doi.org/10.3390/su16041543.
MAPBIOMAS. RAD 2024: Relatório Anual do Desmatamento no Brasil 2024 - São Paulo, Brasil -MapBiomas, 2025 - 209 páginas. DOI: 10.1088/1748-9326/ac5193.
MÉNDEZ CUBILLOS, X. C. Sistema de Controle de Atitude do Satélite Amazonia-1 utilizando Controle Não-Linear e Robusto. 2024. In: Anais... XVI Congresso Ibero-americano de Engenharia Mecânica. Concepción, Chile, 2024.
MENDES, L. J. Análise da cobertura florestal de uma bacia altamente fragmentada no norte do Espírito Santo, Brasil. 2021. 19 f. Monografia (Pós-graduação lato sensu em Gestão Ambiental) – Instituto Federal do Espírito Santo, Campus Nova Venécia, Nova Venécia, 2021.
PARDINI, R., BUENO, A. A., GARDNER, T. A., PRADO, P. I., & METZGER, J. P. Beyond the fragmentation threshold hypothesis: regime shifts in biodiversity across fragmented landscapes. PLoS ONE, v. 5, n. 10, p. e13666, 2010. DOI: https://doi.org/10.1371/journal.pone.0013666.
PEREZ, A.; YEH, C.; AZZARI, G.; BURKE, M.; LOBELL, D.; ERMON, S. Poverty Prediction with Public Landsat 7 Satellite Imagery and Machine Learning. 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA, v. 10, p. 1711.03654v1, 2017. DOI: https://doi.org/10.48550/arXiv.2207.06418.
REED, B. C.; BROWN, J. F.; VANDERZEE, D.; LOVELAND, T. R.; MERCHANT, J. W.; OHLEN, D. O. Measuring phenological variability from satellite imagery. Journal of Vegetation Science, v. 5, n. 5, p. 703–714, 1994. DOI: https://doi.org/10.2307/3235884.
RIZZO, F. A.; ARANTES, L. T.; SILVA, D. C. da C. e; TONELLO, P. S. Análise dos elementos morfométricos da Bacia Hidrográfica do Córrego do Pequiá como instrumento de suporte à sua gestão. Revista Sítio Novo, Palmas, v. 6, n. 3, p. 101–116, 2022. DOI: https://doi.org/10.47236/2594-7036.2022.v6.i3.101-116p.
SANTOS, João Flávio Costa et al. Fragmentação florestal na Mata Atlântica: o caso do município de Paraíba do Sul, RJ, Brasil. Revista Brasileira de Biociências, v. 15, n. 3, 2017. Disponível em: https://seer.ufrgs.br/index.php/rbrasbioci/article/view/114618. Acesso em: 5 fev. 2026.
SLATTERY, Z.; FENNER, R. Spatial Analysis of the Drivers, Characteristics, and Effects of Forest Fragmentation. Sustainability, v. 13, p. 3246, 2021. DOI: https://doi.org/10.3390/su13063246.
TUCCI, C. E. M. Hidrologia: ciência e aplicação. Porto Alegre: UFRGS/ABRH, 2007.
VELOSO, H. P., RANGEL-FILHO, A. L. R., & LIMA, J. C. A. Classificação da vegetação brasileira adaptada a um sistema universal. Rio de Janeiro: IBGE, 1991.
VILANCULO, O. L. A. C. Classificação supervisionada aprimorada para mapeamento da floresta de mangue a partir de imagens de satélite Landsat 8. Revista Brasileira de Sensoriamento Remoto, [S. l.], v. 6, n. 1, 2025. Disponível em: https://www.rbsr.com.br/index.php/RBSR/article/view/183. Acesso em: 5 fev. 2026.
ZHANG, X.; FRIEDL, M. A.; SCHAAF, C. B.; STRAHLER, A. H.; HODGES, J. C. F.; GAO, F.; REED, B. C.; HUETE, A. Monitoring vegetation phenology using MODIS. Remote Sensing of Environment, v. 84, n. 3, p. 471–475, 2003. DOI: https://doi.org/10.1016/S0034-4257(02)00135-9.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Vinicio Crissafe dos Santos Lemos, Jeferson Luiz Ferrari, Letícia Chierici Almeida

This work is licensed under a Creative Commons Attribution 4.0 International License.
It allows sharing, adaptation, and use for any purpose, including commercial use, provided proper attribution is given to the authors and to Revista Sítio Novo.
The authors declare that the work is original and has not been previously published, in whole or in part, except on recognized preprint servers, if declared, and that no other similar manuscript authored by them is published or under review by another journal, whether printed or electronic.
They declare that they have not violated or infringed upon any proprietary rights of others, and that all citations in the text are factual or based on research with scientifically significant accuracy.
The authors retain the copyright of the manuscripts published in this journal, allowing unrestricted use of their content, provided that the original authorship and the publication source are properly cited.















